305 research outputs found

    A Novel Algorithm for the Determination of Bacterial Cell Volumes That is Unbiased by Cell Morphology

    Get PDF
    The determination of cell volumes and biomass offers a means of comparing the standing stocks of auto- and heterotrophic microbes of vastly different sizes for applications including the assessment of the flux of organic carbon within aquatic ecosystems. Conclusions about the importance of particular genotypes within microbial communities (e.g., of filamentous bacteria) may strongly depend on whether their contribution to total abundance or to biomass is regarded. Fluorescence microscopy and image analysis are suitable tools for determining bacterial biomass that moreover hold the potential to replace labor-intensive manual measurements by fully automated approaches. However, the current approaches to calculate bacterial cell volumes from digital images are intrinsically biased by the models that are used to approximate the morphology of the cells. Therefore, we developed a generic contour based algorithm to reconstruct the volumes of prokaryotic cells from two-dimensional representations (i.e., microscopic images) irrespective of their shape. Geometric models of commonly encountered bacterial morphotypes were used to verify the algorithm and to compare its performance with previously described approaches. The algorithm is embedded in a freely available computer program that is able to process both raw (8-bit grayscale) and thresholded (binary) images in a fully automated manne

    A Novel Algorithm for the Determination of Bacterial Cell Volumes That is Unbiased by Cell Morphology

    Get PDF
    The determination of cell volumes and biomass offers a means of comparing the standing stocks of auto- and heterotrophic microbes of vastly different sizes for applications including the assessment of the flux of organic carbon within aquatic ecosystems. Conclusions about the importance of particular genotypes within microbial communities (e.g., of filamentous bacteria) may strongly depend on whether their contribution to total abundance or to biomass is regarded. Fluorescence microscopy and image analysis are suitable tools for determining bacterial biomass that moreover hold the potential to replace labor-intensive manual measurements by fully automated approaches. However, the current approaches to calculate bacterial cell volumes from digital images are intrinsically biased by the models that are used to approximate the morphology of the cells. Therefore, we developed a generic contour based algorithm to reconstruct the volumes of prokaryotic cells from two-dimensional representations (i.e., microscopic images) irrespective of their shape. Geometric models of commonly encountered bacterial morphotypes were used to verify the algorithm and to compare its performance with previously described approaches. The algorithm is embedded in a freely available computer program that is able to process both raw (8-bit grayscale) and thresholded (binary) images in a fully automated manner

    Modeling resilience and sustainability in ancient agricultural systems

    Get PDF
    The reasons why people adopt unsustainable agricultural practices, and the ultimate environmental implications of those practices, remain incompletely understood in the present world. Archaeology, however, offers unique datasets on coincident cultural and ecological change, and their social and environmental effects. This article applies concepts derived from ecological resilience thinking to assess the sustainability of agricultural practices as a result of long-term interactions between political, economic, and environmental systems. Using the urban center of Gordion, in central Turkey, as a case study, it is possible to identify mismatched social and ecological processes on temporal, spatial, and organizational scales, which help to resolve thresholds of resilience. Results of this analysis implicate temporal and spatial mismatches as a cause for local environmental degradation, and increasing extralocal economic pressures as an ultimate cause for the adoption of unsustainable land-use practices. This analysis suggests that a research approach that integrates environmental archaeology with a resilience perspective has considerable potential for explicating regional patterns of agricultural change and environmental degradation in the past

    Real-time pollen identification using holographic imaging and fluorescence measurements

    Get PDF
    Over the past few years, a diverse range of automatic real-time instruments has been developed to respond to the needs of end users in terms of information about atmospheric bioaerosols. One of them, the SwisensPoleno Jupiter, is an airflow cytometer used for operational automatic bioaerosol monitoring. The instrument records holographic images and fluorescence information for single aerosol particles, which can be used for identification of several aerosol types, in particular different pollen taxa. To improve the pollen identification algorithm applied to the SwisensPoleno Jupiter and currently based only on the holography data, we explore the impact of merging fluorescence spectra measurements with holographic images. We demonstrate, using measurements of aerosolised pollen, that combining information from these two sources results in a considerable improvement in the classification performance compared to using only a single source (balanced accuracy of 0.992 vs. 0.968 and 0.878). This increase in performance can be ascribed to the fact that often classes which are difficult to resolve using holography alone can be well identified using fluorescence and vice versa. We also present a detailed statistical analysis of the features of the pollen grains that are measured and provide a robust, physically based insight into the algorithm's identification process. The results are expected to have a direct impact on operational pollen identification models, particularly improving the recognition of taxa responsible for respiratory allergies.</p

    Whole mitochondrial genomes unveil the impact of domestication on goat matrilineal variability

    Get PDF
    Background: The current extensive use of the domestic goat (Capra hircus) is the result of its medium size and high adaptability as multiple breeds. The extent to which its genetic variability was influenced by early domestication practices is largely unknown. A common standard by which to analyze maternally-inherited variability of livestock species is through complete sequencing of the entire mitogenome (mitochondrial DNA, mtDNA). Results: We present the first extensive survey of goat mitogenomic variability based on 84 complete sequences selected from an initial collection of 758 samples that represent 60 different breeds of C. hircus, as well as its wild sister species, bezoar (Capra aegagrus) from Iran. Our phylogenetic analyses dated the most recent common ancestor of C. hircus to ~460,000 years (ka) ago and identified five distinctive domestic haplogroups (A, B1, C1a, D1 and G). More than 90 % of goats examined were in haplogroup A. These domestic lineages are predominantly nested within C. aegagrus branches, diverged concomitantly at the interface between the Epipaleolithic and early Neolithic periods, and underwent a dramatic expansion starting from ~12–10 ka ago. Conclusions: Domestic goat mitogenomes descended from a small number of founding haplotypes that underwent domestication after surviving the last glacial maximum in the Near Eastern refuges. All modern haplotypes A probably descended from a single (or at most a few closely related) female C. aegagrus. Zooarchaelogical data indicate that domestication first occurred in Southeastern Anatolia. Goats accompanying the first Neolithic migration waves into the Mediterranean were already characterized by two ancestral A and C variants. The ancient separation of the C branch (~130 ka ago) suggests a genetically distinct population that could have been involved in a second event of domestication. The novel diagnostic mutational motifs defined here, which distinguish wild and domestic haplogroups, could be used to understand phylogenetic relationships among modern breeds and ancient remains and to evaluate whether selection differentially affected mitochondrial genome variants during the development of economically important breeds

    Diversity of a cytokinin dehydrogenase gene in wild and cultivated barley

    Get PDF
    The cytokinin dehydrogenase gene HvCKX2.1 is the regulatory target for the most abundant heterochromatic small RNAs in drought-stressed barley caryopses. We investigated the diversity of HvCKX2.1 in 228 barley landraces and 216 wild accessions and identified 14 haplotypes, five of these with ten or more members, coding for four different protein variants. The third largest haplotype was abundant in wild accessions (51 members), but absent from the landrace collection. Protein structure predictions indicated that the amino acid substitution specific to haplotype 3 could result in a change in the functional properties of the HvCKX2.1 protein. Haplotypes 1–3 have overlapping geographical distributions in the wild population, but the average rainfall amounts at the collection sites for haplotype 3 plants are significantly higher during November to February compared to the equivalent data for plants of haplotypes 1 and 2. We argue that the likelihood that haplotype 3 plants were excluded from landraces by sampling bias that occurred when the first wild barley plants were taken into cultivation is low, and that it is reasonable to suggest that plants with haplotype 3 are absent from the crop because these plants were less suited to the artificial conditions associated with cultivation. Although the cytokinin signalling pathway influences many aspects of plant development, the identified role of HvCKX2.1 in the drought response raises the possibility that the particular aspect of cultivation that mitigated against haplotype 3 relates in some way to water utilization. Our results therefore highlight the possibility that water utilization properties should be looked on as a possible component of the suite of physiological adaptations accompanying the domestication and subsequent evolution of cultivated barley

    Enrichment of Omnivorous Cercozoan Nanoflagellates from Coastal Baltic Sea Waters

    Get PDF
    Free-living nano-sized flagellates are important bacterivores in aquatic habitats. However, some slightly larger forms can also be omnivorous, i.e., forage upon both bacterial and eukaryotic resources. This hitherto largely ignored feeding mode may have pronounced implications for the interpretation of experiments about protistan bacterivory. We followed the response of an uncultured group of omnivorous cercozoan nanoflagellates from the Novel Clade 2 (Cerc_BAL02) to experimental food web manipulation in samples from the Gulf of GdaƄsk (Southern Baltic Sea). Seawater was either prefiltered through 5 ”m filters to exclude larger predators of nanoflagellates (F-treatment), or prefiltered and subsequently 1∶10 diluted with sterile seawater (F+D-treatment) to stimulate the growth of both, flagellates and bacteria. Initially, Cerc_BAL02 were rapidly enriched under both conditions. They foraged on both, eukaryotic prey and bacteria, and were highly competitive at low concentrations of food. However, these omnivores were later only successful in the F+D treatment, where they eventually represented almost one fifth of all aplastidic nanoflagellates. By contrast, their numbers stagnated in the F-treatment, possibly due to top-down control by a concomitant bloom of other, unidentified flagellates. In analogy with observations about the enrichment of opportunistically growing bacteria in comparable experimental setups we suggest that the low numbers of omnivorous Cerc_Bal02 flagellates in waters of the Gulf of GdaƄsk might also be related to their vulnerability to grazing pressure

    Three Thousand Years of Continuity in the Maternal Lineages of Ancient Sheep (Ovis aries) in Estonia

    Get PDF
    lthough sheep (Ovis aries) have been one of the most exploited domestic animals in Estonia since the Late Bronze Age, relatively little is known about their genetic history. Here, we explore temporal changes in Estonian sheep populations and their mitochondrial genetic diversity over the last 3000 years. We target a 558 base pair fragment of the mitochondrial hypervariable region in 115 ancient sheep from 71 sites in Estonia (c. 1200 BC – AD 1900s), 19 ancient samples from Latvia, Russia, Poland and Greece (6800 BC – AD 1700), as well as 44 samples of modern Kihnu native sheep breed. Our analyses revealed: (1) 49 mitochondrial haplotypes, associated with sheep haplogroups A and B; (2) high haplotype diversity in Estonian ancient sheep; (3) continuity in mtDNA haplotypes through time; (4) possible population expansion during the first centuries of the Middle Ages (associated with the establishment of the new power regime related to 13th century crusades); (5) significant difference in genetic diversity between ancient populations and modern native sheep, in agreement with the beginning of large-scale breeding in the 19th century and population decline in local sheep. Overall, our results suggest that in spite of the observed fluctuations in ancient sheep populations, and changes in the natural and historical conditions, the utilisation of local sheep has been constant in the territory of Estonia, displaying matrilineal continuity from the Middle Bronze Age through the Modern Period, and into modern native sheep

    Disequilibrium, adaptation and the Norse settlement of Greenland

    Get PDF
    This research was supported by the University of Edinburgh ExEDE Doctoral Training Studentship and NSF grant numbers 1202692 and 1140106.There is increasing evidence to suggest that arctic cultures and ecosystems have followed non-linear responses to climate change. Norse Scandinavian farmers introduced agriculture to sub-arctic Greenland in the late tenth century, creating synanthropic landscapes and utilising seasonally abundant marine and terrestrial resources. Using a niche-construction framework and data from recent survey work, studies of diet, and regional-scale climate proxies we examine the potential mismatch between this imported agricultural niche and the constraints of the environment from the tenth to the fifteenth centuries. We argue that landscape modification conformed the Norse to a Scandinavian style of agriculture throughout settlement, structuring and limiting the efficacy of seasonal hunting strategies. Recent climate data provide evidence of sustained cooling from the mid thirteenth century and climate variation from the early fifteenth century. Archaeological evidence suggests that the Norse made incremental adjustments to the changing sub-arctic environment, but were limited by cultural adaptations made in past environments.Publisher PDFPeer reviewe
    • 

    corecore