445 research outputs found

    Current-mode Biquadratic Universal Filter Design with Two Terminal Unity Gain Cells

    Get PDF
    A grounded parallel lossy active inductor and two current-mode (CM) universal filters are presented in this paper. All the circuits use two voltage followers (VFs) and a current follower (CF). The parallel lossy active inductor includes a grounded capacitor which is attractive in integrated circuit (IC) technology. The CM universal filters have one input and standard three outputs such as band-pass (BP), low-pass (LP) and high-pass (HP) responses. All-pass and notch outputs can be obtained by adding extra one CF. Suggested structures in this paper can be constructed with commercially available active devices such as AD844s. Non-ideal gain and intrinsic X-terminal parasitic resistor effects are examined. Several computer simulations with SPICE program and experimental results by employing AD844s are drawn to verify theoretical ones

    Lossy/Lossless Floating/Grounded Inductance Simulation Using One DDCC

    Get PDF
    In this work, we present new topologies for realizing one lossless grounded inductor and two floating, one lossless and one lossy, inductors employing a single differential difference current conveyor (DDCC) and a minimum number of passive components, two resistors, and one grounded capacitor. The floating inductors are based on ordinary dual-output differential difference current conveyor (DO-DDCC) while the grounded lossless inductor is based one a modified dual-output differential difference current conveyor (MDO-DDCC). The proposed lossless floating inductor is obtained from the lossy one by employing a negative impedance converter (NIC). The non-ideality effects of the active element on the simulated inductors are investigated. To demonstrate the performance of the proposed grounded inductance simulator as an example, it is used to construct a parallel resonant circuit. SPICE simulation results are given to confirm the theoretical analysis

    All-Pass Sections with High Gain Opportunity

    Get PDF
    In this paper, two new circuits for realizing firstorder voltage-mode (VM) all-pass section (APS) with variable gain are presented. The first proposed filter uses a single differential difference current conveyor (DDCC), one grounded capacitor and three resistors. The second proposed filter consists of two DDCCs, three grounded resistors and one grounded capacitor. It provides highinput and low-output impedances and can provide high gain. Both of the proposed circuits do not require any element matching condition. Moreover, oscillator circuits with minimum number of active and passive elements are derived from the proposed APSs. The proposed circuits are tested experimentally or by simulation using SPICE program to confirm the theory

    Terms Dictionary Computer Applications Using Microsoft Visual Basic 6.0

    Full text link
    Currently the use of computers in various fields has become a necessity, because computers have several advantages, including the amount of which can save a lot of data, computers can also help us to give us the information we need quickly, so the job will be easier. In scientific writing, the writer makes Computer Applications Dictionary term with the goal of keeping people - people who do not know the term computer can find out in a more practical but still got the sense that weight. Hopefully with this application is expected to help the society who want to know more about computers, especially about the terms that have anything to do with computers. In Scientific Writing this makes the author using word processing software Microsoft Word 2003 because this software easy to use and already famous as a good word processor. Whereas in making the program the author uses the Microsoft Visual Basic 6.0 software because this software is not too difficult to understand, while also able to manage data properly

    Sea level changes along the Turkish coasts of the Black Sea, the Aegean Sea and the Eastern Mediterranean

    Get PDF
    Short, tidal, subtidal, seasonal, secular sea-level variations, sea-level differences and interactions between the basins have been studied, based on the data collected at some permanent and temporary tide gauges located along the Turkish coasts, mostly along the Straits connecting the Marmara Sea to outer seas. Even though the deficiency of sufficient information prevented us to reach the desired results, many pre-existed studies have been improved. Short-period oscillations were clearly identified along the Turkish Strait System and related to their natu-ral periods. The tidal amplitudes are low along the Turkish coasts, except northern Aegean and eastern Mediterranean. The stability of harmonic constants of Samsun and Antalya were examined and most of the long period constituents were found to be unstable. Even the Marmara Sea is not affected from the tidal oscillations of Black and Aegean Seas, some interactions in low frequency band have been detected. Subtidal sea level fluctuations (3-14 day) have relations with the large-scale cyclic atmospheric patterns passing over the Turkish Straits System. Short-term effects of wind on sea level are evident.Seasonal sea-level fluctuations along the Turkish Straits System are in accord with Black Sea's hydrological cycle. The differential range of the monthly mean sea levels between the Black Sea and the Marmara Sea is highly variable; high during spring and early summer and low during fall and winter.On the average, there is a pronounced sea-level difference (55 cm) along the Turkish Straits System. However, the slope is nonlinear, being much steeper in the Strait of Istanbul. This barotrophic pressure difference is one of the most important factors causing the two-layer flow through the system. The topography and hydrodynamics of the straits, the dominant wind systems and their seasonal variations make this flow more complicated. For secular sea level changes, a rise of 3.2 mm/a was computed for Karsiyaka (1935-71) and a steady trend (-0.4 mm /a) has been observed for annual sea levels at Antalya (1935-77). The decreasing trend (-6.9 mm/a) at Samsun is contrary to the secular rising trend of the Black Sea probably because of its rather short monitoring period (1963-77)

    Femtosecond-scale switching based on excited free-carriers

    Get PDF
    We describe novel optical switching schemes operating at femtosecond time scales by employing free carrier (FC) excitation. Such unprecedented switching times are made possible by spatially patterning the density of the excited FCs. In the first realization, we rely on diffusion, i.e., on the nonlocality of the FC nonlinear response of the semiconductor, to erase the initial FC pattern and, thereby, eliminate the reflectivity of the system. In the second realization, we erase the FC pattern by launching a second pump pulse at a controlled delay. We discuss the advantages and limitations of the proposed approaches and demonstrate their potential applicability for switching ultrashort pulses propagating in silicon waveguides. We show switching efficiencies of up to 50% for 100 fs pump pulses, which is an unusually high level of efficiency for such a short interaction time, a result of the use of the strong FC nonlinearity. Due to limitations of saturation and pattern effects, these schemes can be employed for switching applications that require femtosecond features but standard repetition rates. Such applications include switching of ultrashort pulses, femtosecond spectroscopy (gating), time-reversal of short pulses for aberration compensation, and many more. This approach is also the starting point for ultrafast amplitude modulations and a new route toward the spatio-temporal shaping of short optical pulse

    Identifying the role of the local density of optical states in frequency conversion of light in confined media

    Get PDF
    We have reversibly switched the resonance of a GaAs-AlAs microcavity in the near-infrared near λ=1300 nm within 300 fs by the electronic Kerr effect. We reveal by pump-probe spectroscopy a remarkable red shift or blue shift of the light confined inside the cavity for small pulse delays, depending on their temporal ordering. The color-converted light is efficiently generated in a broad frequency continuum that differs markedly from the instantaneous cavity resonance in terms of the central frequency and bandwidth. From observations on cavities with different quality factors, we identify the role of the local density of optical states (LDOS) available to the newly generated light frequencies. In particular, we distinguish the effect of the LDOS related to the cavity resonance itself, and the LDOS continuum that leaks in from the vacuum surrounding the cavity. Our new insights provide a unified picture for seemingly disparate results in traditional and nanophotonic nonlinear optics

    Supply chain network design using an enhanced hybrid swarm-based optimization algorithm

    Get PDF
    This is the final version. Available from IGI Global via the DOI in this record. Supply chain network design is one of the most important strategic issues in operations management. The main objective in designing a supply chain is to keep the cost as low as possible. However, the modelling of a supply chain requires more than single-objective such as lead-time minimization, service level maximization, and environmental impact maximization among others. Usually these objectives may cause conflicts such as increasing the service level usually causes a growth in costs. Therefore, the aim should be to find trade-off solutions to satisfy the conflicting objectives. The aim of this chapter is to propose a new method based on a hybrid version of the Bees Algorithm with Slope Angle Computation and Hill Climbing Algorithm to solve a multi-objective supply chain network design problem. A real case from the literature has been selected and solved in order to show the potentiality of the proposed method in solving a large scale combinatorial problem

    New-generation biocompatible Ti-based metallic glass ribbons for flexible implants

    Get PDF
    We introduce five new biocompatible Ti-based metallic glass (MG) compositions with different metalloid and soft metal content for a synergistic improvement in corrosion properties. Without any potentially harmful elements such as Cu, Ni or Be, these novel alloys can eliminate the risk of inflammatory reaction when utilized for permanent medical implants. Excluding Cu, Ni or Be, which are essential for Ti-based bulk MG production, on the other hand, confines the glass-forming ability of novel alloys to a moderate level. In this study, toxic-element free MG alloys with significant metalloid (Si–Ge–B, 15–18 at.%) and minor soft element (Sn, 2–5 at.%) additions are produced in ribbon form using conventional single-roller melt spinning technique. Their glass-forming abilities and their structural and thermal properties are comparatively investigated using X-ray diffraction (XRD), synchrotron XRD and differential scanning calorimetry. Their corrosion resistance is ascertained in a biological solution to analyze their biocorrosion properties and compare them with other Ti-based bulk MGs along with energy dispersive X-ray. Ti60Zr20Si8Ge7B3Sn2 and Ti50Zr30Si8Ge7B3Sn2 MG ribbons present a higher pitting potential and passivation domain compared with other Ti-based MG alloys tested in similar conditions. Human mesenchymal stem cell metabolic activity and cytocompatibility tests confirm their outstanding cytocompatibility, outperforming Ti-Al6-V4
    corecore