1,417 research outputs found

    Parametric study of the polarization dependence of nonlinear Breit-Wheeler pair creation process using two laser pulses

    Full text link
    With the rapid development of high-power petawatt class lasers worldwide, exploring physics in the strong field QED regime will become one of the frontiers for laser-plasma interactions research. Particle-in-cell codes, including quantum emission processes, are powerful tools for predicting and analyzing future experiments where the physics of relativistic plasma is strongly affected by strong-field QED processes. The spin/polarization dependence of these quantum processes has been of recent interest. In this article, we perform a parametric study of the interaction of two laser pulses with an ultrarelativistic electron beam. The first pulse is optimized to generate high-energy photons by nonlinear Compton scattering and efficiently decelerate the electron beam through quantum radiation reaction. The second pulse is optimized to generate electron-positron pairs by nonlinear Breit-Wheeler decay of the photons with the maximum polarization dependence. This may be experimentally realized as a verification of the strong field QED framework, including the spin/polarization rates.Comment: 16 pages, 13 figure

    Collisionless shock acceleration in the corona of an inertial confinement fusion pellet with possible application to ion fast ignition

    Get PDF
    Funding: This work was partially supported by the UK Engineering and Physical Sciences Research Council (grants no. EP/N013298/1, EP/R004773/1 and EP/N028694/1). This work has also been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2019–2020 (grant agreement no. 633053) and Eurofusion Enabling Research (grant no. ENR-IFE19.CCFE-01). M.V. acknowledges the support of the Portuguese Science Foundation (FCT) (grantno. SFRH/BPD/119642/2016).Two-dimensional particle-in-cell simulations are used to explore collisionless shock acceleration in the corona plasma surrounding the compressed core of an inertial confinement fusion pellet. We show that an intense laser pulse interacting with the long scale-length plasma corona is able to launch a collisionless shock around the critical density. The nonlinear wave travels up-ramp through the plasma reflecting and accelerating the background ions. Our results suggest that protons with characteristics suitable for ion fast ignition may be achieved in this way. This article is part of a discussion meeting issue ‘Prospects for high gain inertial fusion energy (part 2)’.Publisher PDFPeer reviewe

    Quantifying co-benefits and disbenefits of Nature-based Solutions targeting Disaster Risk Reduction

    Get PDF
    Nature-based Solutions function (NBS) as an umbrella concept for ecosystem-based approaches that are an alternative to traditional engineering solutions for Disaster Risk Reduction. Their rising popularity is explained partly by their entailing additional benefits (so-called co-benefits) for the environment, society, and economy. The few existing frameworks for assessing cobenefits are lacking guidance on co-benefit pre-assessment that is required for the NBS selection and permission process. Going beyond these, this paper develops a comprehensive guidance on quantitative pre-assessment of potential co-benefits and disbenefits of NBS tackling Disaster Risk Reduction. It builds on methods and frameworks from existing NBS literature and related disciplines. Furthermore, this paper discusses the evaluation of the quantified results of the pre-assessment. In particular, the evaluation focuses on the significance of change of the estimated co-benefits and dis-benefits as well as the sustainability of the NBS. This paper will support decision-making in planning processes on suitability and sustainability of Nature-based Solutions and assist in the preparation of Environmental Impact Assessments of projects

    SARS-CoV-2 infection and lung cancer : potential therapeutic modalities

    Get PDF
    Human coronaviruses, especially SARS-CoV-2, are emerging pandemic infectious diseases with high morbidity and mortality in certain group of patients. In general, SARS-CoV-2 causes symptoms ranging from the common cold to severe conditions accompanied by lung injury, acute respiratory distress syndrome in addition to other organs’ destruction. The main impact upon SARS-CoV-2 infection is damage to alveolar and acute respiratory failure. Thus, lung cancer patients are identified as a particularly high-risk group for SARS-CoV-2 infection and its complications. On the other hand, it has been reported that SARS-CoV-2 spike (S) protein binds to angiotensin-converting enzyme 2 (ACE-2), that promotes cellular entry of this virus in concert with host proteases, principally transmembrane serine protease 2 (TMPRSS2). Today, there are no vaccines and/or effective drugs against the SARS-CoV-2 coronavirus. Thus, manipulation of key entry genes of this virus especially in lung cancer patients could be one of the best approaches to manage SARS-CoV-2 infection in this group of patients. We herein provide a comprehensive and up-to-date overview of the role of ACE-2 and TMPRSS2 genes, as key entry elements as well as therapeutic targets for SARS-CoV-2 infection, which can help to better understand the applications and capacities of various remedial approaches for infected individuals, especially those with lung cancer

    Nature-based solutions can help reduce the impact of natural hazards: A global analysis of NBS case studies

    Get PDF
    The knowledge derived from successful case studies can act as a driver for the implementation and upscaling of nature-based solutions (NBS). This work reviewed 547 case studies to gain an overview of NBS practices and their role in reducing the adverse impact of natural hazards and climate change. The majority (60 %) of case studies are situated in Europe compared with the rest of the world where they are poorly represented. Of 547 case studies, 33 % were green solutions followed by hybrid (31 %), mixed (27 %), and blue (10 %) approaches. Approximately half (48 %) of these NBS interventions were implemented in urban (24 %), and river and lake (24 %) ecosystems. Regarding the scale of intervention, 92 % of the case studies were operationalised at local (50 %) and watershed (46 %) scales while very few (4 %) were implemented at the landscape scale. The results also showed that 63 % of NBS have been used to deal with natural hazards, climate change, and loss of biodiversity, while the remaining 37 % address socio-economic challenges (e.g., economic development, social justice, inequality, and cohesion). Around 88 % of NBS implementations were supported by policies at the national level and the rest 12 % at local and regional levels. Most of the analysed cases contributed to Sustainable Development Goals 15, 13, and 6, and biodiversity strategic goals B and D. Case studies also highlighted the co-benefits of NBS: 64 % of them were environmental co-benefits (e.g., improving biodiversity, air and water qualities, and carbon storage) while 36 % were social (27 %) and economic (9 %) co-benefits. This synthesis of case studies helps to bridge the knowledge gap between scientists, policymakers, and practitioners, which can allow adopting and upscaling of NBS for disaster risk reduction and climate change adaptation and enhance their preference in decision-making processes

    Are we ready to transfer optical light to gamma-rays?

    Get PDF
    Scattering relativistic electrons with optical lasers can result in a significant frequency upshift for the photons, potentially producing γ\gamma-rays. This is what linear Compton scattering taught us. Ultra-intense lasers offer nowadays a new paradigm where multi-photon absorption effects come into play. These effects can result in higher harmonics, higher yields and also electron-positron pairs. This article intends to discriminate the different laser scenarios that have been proposed over the past years as well as to give scaling laws for future experiments. The energy conversion from laser or particles to high-frequency photons is addressed for both the well-known counter propagating electron beam-laser interaction and for Quantum-electrodynamics cascades triggered by various lasers. Constructing bright and energetic gamma-ray sources in controlled conditions is within an ace of seeing the light of day.Comment: 9 pages, 9 figure

    Charged Particle Production in Proton-, Deuteron-, Oxygen- and Sulphur-Nucleus Collisions at 200 GeV per Nucleon

    Get PDF
    The transverse momentum and rapidity distributions of net protons and negatively charged hadrons have been measured for minimum bias proton-nucleus and deuteron-gold interactions, as well as central oxygen-gold and sulphur-nucleus collisions at 200 GeV per nucleon. The rapidity density of net protons at midrapidity in central nucleus-nucleus collisions increases both with target mass for sulphur projectiles and with the projectile mass for a gold target. The shape of the rapidity distributions of net protons forward of midrapidity for d+Au and central S+Au collisions is similar. The average rapidity loss is larger than 2 units of rapidity for reactions with the gold target. The transverse momentum spectra of net protons for all reactions can be described by a thermal distribution with `temperatures' between 145 +- 11 MeV (p+S interactions) and 244 +- 43 MeV (central S+Au collisions). The multiplicity of negatively charged hadrons increases with the mass of the colliding system. The shape of the transverse momentum spectra of negatively charged hadrons changes from minimum bias p+p and p+S interactions to p+Au and central nucleus-nucleus collisions. The mean transverse momentum is almost constant in the vicinity of midrapidity and shows little variation with the target and projectile masses. The average number of produced negatively charged hadrons per participant baryon increases slightly from p+p, p+A to central S+S,Ag collisions.Comment: 47 pages, submitted to Z. Phys.

    Magnetic field generation during intense laser channelling in underdense plasma

    Get PDF
    Channel formation during the propagation of a high-energy (120 J) and long duration (30 ps) laser pulse through an underdense deuterium plasma has been spatially and temporally resolved via means of a proton imaging technique, with intrinsic resolutions of a few μm and a few ps, respectively. Conclusive proof is provided that strong azimuthally symmetric magnetic fields with a strength of around 0.5 MG are created inside the channel, consistent with the generation of a collimated beam of relativistic electrons. The inferred electron beam characteristics may have implications for the cone-free fast-ignition scheme of inertial confinement fusion

    High p_T Spectra of Identified Particles Produced in Pb+Pb Collisions at 158GeV/nucleon Beam Energy

    Full text link
    Transverse momentum spectra of pi^{+/-}, p, pbar, K^{+/-}, K^0_s and Lambda at midrapidity were measured at high p_T in Pb+Pb collisions at 158GeV/nucleon beam energy by the NA49 experiment. Particle yield ratios (p/pi, K/pi and Lambda/K^0_s) show an enhancement of the baryon/meson ratio for p_T>2GeV/c. The nuclear modification factor R_{CP} is extracted and compared to RHIC measurements and pQCD calculations.Comment: Quark Matter 2005 parallel section proceeding

    Measurement of event-by-event transverse momentum and multiplicity fluctuations using strongly intensive measures Δ[PT,N]\Delta[P_T, N] and Σ[PT,N]\Sigma[P_T, N] in nucleus-nucleus collisions at the CERN Super Proton Synchrotron

    Full text link
    Results from the NA49 experiment at the CERN SPS are presented on event-by-event transverse momentum and multiplicity fluctuations of charged particles, produced at forward rapidities in central Pb+Pb interactions at beam momenta 20AA, 30AA, 40AA, 80AA, and 158AA GeV/c, as well as in systems of different size (p+pp+p, C+C, Si+Si, and Pb+Pb) at 158AA GeV/c. This publication extends the previous NA49 measurements of the strongly intensive measure ΦpT\Phi_{p_T} by a study of the recently proposed strongly intensive measures of fluctuations Δ[PT,N]\Delta[P_T, N] and Σ[PT,N]\Sigma[P_T, N]. In the explored kinematic region transverse momentum and multiplicity fluctuations show no significant energy dependence in the SPS energy range. However, a remarkable system size dependence is observed for both Δ[PT,N]\Delta[P_T, N] and Σ[PT,N]\Sigma[P_T, N], with the largest values measured in peripheral Pb+Pb interactions. The results are compared with NA61/SHINE measurements in p+pp+p collisions, as well as with predictions of the UrQMD and EPOS models.Comment: 12 pages, 14 figures, to be submitted to PR
    • …
    corecore