294 research outputs found

    Life Detection Subsystem Progress Report No. 1

    Get PDF
    Radioisotopic biochemical probe for extraterrestrial life detection based on cell uptake of phosphate and sulfu

    A study toward development of an automated microbial metabolism laboratory Monthly progress report

    Get PDF
    Life detection systems based on phosphate and sulfur uptake for automated microbial metabolism laborator

    Model of the complex of Parathyroid hormone-2 receptor and Tuberoinfundibular peptide of 39 residues

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We aim to propose interactions between the parathyroid hormone-2 receptor (PTH2R) and its ligand the tuberoinfundibular peptide of 39 residues (TIP39) by constructing a homology model of their complex. The two related peptides parathyroid hormone (PTH) and parathyroid hormone related protein (PTHrP) are compared with the complex to examine their interactions.</p> <p>Findings</p> <p>In the model, the hydrophobic N-terminus of TIP39 is buried in a hydrophobic part of the central cavity between helices 3 and 7. Comparison of the peptide sequences indicates that the main discriminator between the agonistic peptides TIP39 and PTH and the inactive PTHrP is a tryptophan-phenylalanine replacement. The model indicates that the smaller phenylalanine in PTHrP does not completely occupy the binding site of the larger tryptophan residue in the other peptides. As only TIP39 causes internalisation of the receptor and the primary difference being an aspartic acid in position 7 of TIP39 that interacts with histidine 396 in the receptor, versus isoleucine/histidine residues in the related hormones, this might be a trigger interaction for the events that cause internalisation.</p> <p>Conclusions</p> <p>A model is constructed for the complex and a trigger interaction for full agonistic activation between aspartic acid 7 of TIP39 and histidine 396 in the receptor is proposed.</p

    The role of DNA damage response pathways in chromosome fragility in Fragile X syndrome

    Get PDF
    FRAXA is one of a number of fragile sites in human chromosomes that are induced by agents like fluorodeoxyuridine (FdU) that affect intracellular thymidylate levels. FRAXA coincides with a >200 CGG•CCG repeat tract in the 5′ UTR of the FMR1 gene, and alleles prone to fragility are associated with Fragile X (FX) syndrome, one of the leading genetic causes of intellectual disability. Using siRNA depletion, we show that ATR is involved in protecting the genome against FdU-induced chromosome fragility. We also show that FdU increases the number of γ-H2AX foci seen in both normal and patient cells and increases the frequency with which the FMR1 gene colocalizes with these foci in patient cells. In the presence of FdU and KU55933, an ATM inhibitor, the incidence of chromosome fragility is reduced, suggesting that ATM contributes to FdU-induced chromosome fragility. Since both ATR and ATM are involved in preventing aphidicolin-sensitive fragile sites, our data suggest that the lesions responsible for aphidicolin-induced and FdU-induced fragile sites differ. FRAXA also displays a second form of chromosome fragility in absence of FdU, which our data suggest is normally prevented by an ATM-dependent process

    Glucagon-Like Peptide-1 Protects β-Cells Against Apoptosis by Increasing the Activity of an Igf-2/Igf-1 Receptor Autocrine Loop

    Get PDF
    OBJECTIVE: The gluco-incretin hormones glucagon-like peptide (GLP)-1 and gastric inhibitory peptide (GIP) protect beta-cells against cytokine-induced apoptosis. Their action is initiated by binding to specific receptors that activate the cAMP signaling pathway, but the downstream events are not fully elucidated. Here we searched for mechanisms that may underlie this protective effect. RESEARCH DESIGN AND METHODS: We performed comparative transcriptomic analysis of islets from control and GipR(-/-);Glp-1-R(-/-) mice, which have increased sensitivity to cytokine-induced apoptosis. We found that IGF-1 receptor expression was markedly reduced in the mutant islets. Because the IGF-1 receptor signaling pathway is known for its antiapoptotic effect, we explored the relationship between gluco-incretin action, IGF-1 receptor expression and signaling, and apoptosis. RESULTS: We found that GLP-1 robustly stimulated IGF-1 receptor expression and Akt phosphorylation and that increased Akt phosphorylation was dependent on IGF-1 but not insulin receptor expression. We demonstrated that GLP-1-induced Akt phosphorylation required active secretion, indicating the presence of an autocrine activation mechanism; we showed that activation of IGF-1 receptor signaling was dependent on the secretion of IGF-2. We demonstrated, both in MIN6 cell line and primary beta-cells, that reducing IGF-1 receptor or IGF-2 expression or neutralizing secreted IGF-2 suppressed GLP-1-induced protection against apoptosis. CONCLUSIONS: An IGF-2/IGF-1 receptor autocrine loop operates in beta-cells. GLP-1 increases its activity by augmenting IGF-1 receptor expression and by stimulating secretion; this mechanism is required for GLP-1-induced protection against apoptosis. These findings may lead to novel ways of preventing beta-cell loss in the pathogenesis of diabetes

    Pituitary Adenylate Cyclase-Activating Polypeptide Stimulates Glucose Production via the Hepatic Sympathetic Innervation in Rats

    Get PDF
    OBJECTIVE-The unraveling of the elaborate brain networks that control glucose metabolism presents one of the current challenges in diabetes research. Within the central nervous system, the hypothalamus is regarded as the key brain area to regulate energy homeostasis. The aim of the present study was to investigate the hypothalamic mechanism involved in the hyperglycemic effects of the neuropeptide pituitary adenylyl cyclase-activating polypeptide (PACAP). RESEARCH DESIGN AND METHODS-Endogenous glucose production (EGP) was determined during intracerebroventricular infusions of PACAP-38, vasoactive intestinal peptide (VIP), or their receptor agonists. The specificity of their receptors was examined by coinfusions of receptor antagonists. The possible neuronal pathway involved was investigated by 1) local injections in hypothalamic nuclei, 2) retrograde neuronal tracing from the thoracic spinal cord to hypothalamic preautonomic neurons together with Fos immunoreactivity, and 3) specific hepatic sympathetic or parasympathetic denervation to block the autonomic neuronal input to liver. LTS-Intracerebroventiicular infusion of PACAP-38 increased EGP to a similar extent as a VIP/PACAP-2 (VPAC2) receptor agonist, and intracerebroventricular administration of VIP had significantly less influence on EGP. The PACAP-38 induced increase of EGP was significantly suppressed by preinfusion of a VPAC2 but not a PAC1 receptor antagonist, as well as by hepatic sympathetic but not parasympathetic denervation. In the hypothalamus, Fos immunoreactivity induced by PACAP-38 was colocalized within autonomic neurons in paraventricular nuclei projecting to preganglionic sympathetic neurons in the spinal cord. Local infusion of PACAP-38 directly into the PVN induced a significant increase of EGP. CONCLUSIONS-This study demonstrates that PACAP-38 signaling via sympathetic preautonomic neurons located in the paraventricular nucleus is an important component in the hypothalamic control of hepatic glucose production. Diabetes 59: 1591-1600, 201

    Predicting hospital cost in CKD patients through blood chemistry values

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Controversy exists in predicting costly hospitalization in patients with chronic kidney disease and co-morbid conditions. We therefore tested associations between serum chemistry values and the occurrence of in-patient hospital costs over a thirteen month study period. Secondarily, we derived a linear combination of variables to estimate probability of such occurrences in any patient.</p> <p>Method</p> <p>We calculated parsimonious values for select variables associated with in-patient hospitalization and compared sensitivity and specificity of these models to ordinal staging of renal disease.</p> <p>Data from 1104 de-identified patients which included 18 blood chemistry observations along with complete claims data for all medical expenses.</p> <p>We employed multivariable logistic regression for serum chemistry values significantly associated with in-patient hospital costs exceeding $3,000 in any single month and contrasted those results to other models by ROC area curves.</p> <p>Results</p> <p>The linear combination of weighted Z scores for parathyroid hormone, phosphorus, and albumin correlated with in-patient hospital care at p < 0.005. ROC curves derived from weighted variables of age, eGFR, hemoglobin, albumin, creatinine, and alanine aminotransferase demonstrated significance over models based on non-weighted Z scores for those same variables or CKD stage alone. In contrast, the linear combination of weighted PTH, PO4 and albumin demonstrated better prediction, but not significance over non-weighted Z scores for PTH alone.</p> <p>Conclusion</p> <p>Further study is justified to explore indices that predict costly hospitalization. Such metrics could assist Accountable Care Organizations in evaluating risk adjusted compensation for providers.</p

    EP<sub>2</sub> receptor antagonism reduces peripheral and central hyperalgesia in a preclinical mouse model of endometriosis

    Get PDF
    Endometriosis is an incurable gynecological disorder characterized by debilitating pain and the establishment of innervated endometriosis lesions outside the uterus. In a preclinical mouse model of endometriosis we demonstrated overexpression of the PGE2-signaling pathway (including COX-2, EP2, EP4) in endometriosis lesions, dorsal root ganglia (DRG), spinal cord, thalamus and forebrain. TRPV1, a PGE2-regulated channel in nociceptive neurons was also increased in the DRG. These findings support the concept that an amplification process occurs along the pain neuroaxis in endometriosis. We then tested TRPV1, EP2, and EP4 receptor antagonists: The EP2 antagonist was the most efficient analgesic, reducing primary hyperalgesia by 80% and secondary hyperalgesia by 40%. In this study we demonstrate reversible peripheral and central hyperalgesia in mice with induced endometriosis

    Progressive GAA·TTC Repeat Expansion in Human Cell Lines

    Get PDF
    Trinucleotide repeat expansion is the genetic basis for a sizeable group of inherited neurological and neuromuscular disorders. Friedreich ataxia (FRDA) is a relentlessly progressive neurodegenerative disorder caused by GAA·TTC repeat expansion in the first intron of the FXN gene. The expanded repeat reduces FXN mRNA expression and the length of the repeat tract is proportional to disease severity. Somatic expansion of the GAA·TTC repeat sequence in disease-relevant tissues is thought to contribute to the progression of disease severity during patient aging. Previous models of GAA·TTC instability have not been able to produce substantial levels of expansion within an experimentally useful time frame, which has limited our understanding of the molecular basis for this expansion. Here, we present a novel model for studying GAA·TTC expansion in human cells. In our model system, uninterrupted GAA·TTC repeat sequences display high levels of genomic instability, with an overall tendency towards progressive expansion. Using this model, we characterize the relationship between repeat length and expansion. We identify the interval between 88 and 176 repeats as being an important length threshold where expansion rates dramatically increase. We show that expansion levels are affected by both the purity and orientation of the repeat tract within the genomic context. We further demonstrate that GAA·TTC expansion in our model is independent of cell division. Using unique reporter constructs, we identify transcription through the repeat tract as a major contributor to GAA·TTC expansion. Our findings provide novel insight into the mechanisms responsible for GAA·TTC expansion in human cells
    corecore