7,802 research outputs found

    Spectral Classification and Effective Temperatures of L and T Dwarfs Based of Near-Infrared Spectra

    Full text link
    We have obtained near-infrared spectra of L dwarfs, L/T transition objects and T dwarfs using Subaru. Resulting spectra are examined in detail to see their dependence on the spectral types. We have obtained bolometric luminosities of the objects with known parallaxes in our sample, first by integrating the spectra and second by K band bolometric correction. We derive the relation between effective temperature and spectral type.Comment: To appear in May 20, 2004 issue of ApJ There is a companion paper by Tsuji, Nakajima and Yanagisaw

    Chemical Equilibrium Abundances in Brown Dwarf and Extrasolar Giant Planet Atmospheres

    Full text link
    We calculate detailed chemical abundance profiles for a variety of brown dwarf and extrasolar giant planet atmosphere models, focusing in particular on Gliese 229B, and derive the systematics of the changes in the dominant reservoirs of the major elements with altitude and temperature. We assume an Anders and Grevesse (1989) solar composition of 27 chemical elements and track 330 gas--phase species, including the monatomic forms of the elements, as well as about 120 condensates. We address the issue of the formation and composition of clouds in the cool atmospheres of substellar objects and explore the rain out and depletion of refractories. We conclude that the opacity of clouds of low--temperature (≀\le900 K), small--radius condensibles (specific chlorides and sulfides), may be responsible for the steep spectrum of Gliese 229B observed in the near infrared below 1 \mic. Furthermore, we assemble a temperature sequence of chemical transitions in substellar atmospheres that may be used to anchor and define a sequence of spectral types for substellar objects with Teff_{eff}s from ∌\sim2200 K to ∌\sim100 K.Comment: 57 pages total, LaTeX, 14 figures, 5 tables, also available in uuencoded, gzipped, and tarred form via anonymous ftp at www.astrophysics.arizona.edu (cd to pub/burrows/chem), submitted to Ap.

    Dust in the Photospheric Environment: Unified Cloudy Models of M, L, and T Dwarfs

    Get PDF
    We address the problem of how dust forms and how it could be sustained in the static photospheres of cool dwarfs for a long time. In the cool and dense gas, dust forms easily at the condensation temperature, T_cond, and the dust can be in detailed balance with the ambient gas so long as it remains smaller than the critical radius, r_cr. However, dust will grow larger and segregate from the gas when it will be larger than r_cr somewhere at the lower temperature, which we refer to as the critical temperature, T_cr. Then, the large dust grains will precipitate below the photosphere and only the small dust grains in the region of T_cr < T < T_cond can be sustained in the photosphere. Thus a dust cloud is formed. Incorporating the dust cloud, non-grey model photo- spheres in radiative-convective equilibrium are extended to T_eff as low as 800K. Observed colors and spectra of cool dwarfs can consistently be accounted for by a single grid of our cloudy models. This fact in turn can be regarded as supporting evidence for our basic assumption on the cloud formation.Comment: 50 pages with 14 postscript figures, to be published in Astrophys.

    CIT-5: a high-silica zeolite with 14-ring pores

    Get PDF
    The synthesis and structure of a new zeolite, CIT-5 (California Institute of Technology Number Five), is described, which possesses one-dimensional pores comprised of 14 T-atoms (tetrahedrally coordinated silicon or aluminium atoms)

    Photometric Variability in the Ultracool Dwarf BRI 0021-0214: Possible Evidence for Dust Clouds

    Get PDF
    We report CCD photometric monitoring of the nonemission ultracool dwarf BRI 0021-0214 (M9.5) obtained during 10 nights in 1995 November and 4 nights in 1996 August, with CCD cameras at 1 m class telescopes on the observatories of the Canary Islands. We present differential photometry of BRI 0021-0214, and we report significant variability in the I-band light curve obtained in 1995. A periodogram analysis finds a strong peak at a period of 0.84 day. This modulation appears to be transient because it is present in the 1995 data but not in the 1996 data. We also find a possible period of 0.20 day, which appears to be present in both the 1995 and 1996 datasets. However, we do not find any periodicity close to the rotation period expected from the spectroscopic rotational broadening (< 0.14 day). BRI 0021-0214 is a very inactive object, with extremely low levels of Halpha and X-ray emission. Thus, it is unlikely that magnetically induced cool spots can account for the photometric variability. The photometric variability of BRI 0021-0214 could be explained by the presence of an active meteorology that leads to inhomogeneous clouds on the surface. The lack of photometric modulation at the expected rotational period suggests that the pattern of surface features may be more complicated than previously anticipated.Comment: Accepted for publication in ApJ. 26 pages, 13 figures include

    The non-uniform, dynamic atmosphere of Betelgeuse observed at mid-infrared wavelengths

    Get PDF
    We present an interferometric study of the continuum surface of the red supergiant star Betelgeuse at 11.15 microns wavelength, using data obtained with the Berkeley Infrared Spatial Interferometer each year between 2006 and 2010. These data allow an investigation of an optically thick layer within 1.4 stellar radii of the photosphere. The layer has an optical depth of ~1 at 11.15 microns, and varies in temperature between 1900 K and 2800 K and in outer radius between 1.16 and 1.36 stellar radii. Electron-hydrogen atom collisions contribute significantly to the opacity of the layer. The layer has a non-uniform intensity distribution that changes between observing epochs. These results indicate that large-scale surface convective activity strongly influences the dynamics of the inner atmosphere of Betelgeuse, and mass-loss processes.Comment: 13 pages, 5 figures, in press (ApJ

    Infrared Spectra and Visibilities as Probes of the Outer Atmospheres of Red Supergiant Stars

    Full text link
    In the light of the recent results of the stellar interferometry, we examine the nature of the extra molecular layer outside the photosphere of red super- giant stars, so far studied mostly with the use of the infrared spectra. Although the visibility data are more direct probes of the spatial structure of the outer atmosphere, it is essential that they are analyzed in combination with the spectral data of a wide spectral coverage. In the case of the M2 supergiant mu Cephei, several sets of data, both spectra and visibilities, strongly suggested the presence of an extra-molecular layer, and its basic parameters are estimated to be: excitation temperature T_ex = 1600 K, column densities of CO and H2O N_col = 3.0d+20/cm2, and inner radius R_in = 2.0R*. The result shows reasonable agreement with the one based on the infrared spectra alone, and this may be because the infrared spectra already include some information on the spatial structure of the outer atmosphere. It is important, however, that the model inferred from the spectra is now fully supported with the recent visibility data. In the case of the M2 supergiant alpha Orionis, the infrared spectra and visibilities show a consistent picture in that its molecular layer is closer to the photosphere (R_in = 1.3R*) with higher gas temperature (T_ex = 2250 K) and lower gas column density (N_col = 1.0d+20/cm2), compared with that of mu Cephei. Some controversy on the interpretation of the mid infrared data of alpha Orionis can be reconciled.Comment: 47 pages, 14 Postscript figures, to be published in the Astrophysical Journa

    Optical linear polarization in ultra cool dwarfs: A tool to probe dust in the ultra cool dwarf atmospheres

    Full text link
    Aims.Recent studies have detected linear polarization in L dwarfs in the optical I band. Theoretical models have been developed to explain this polarization. These models predict higher polarization at shorter wavelengths. We discuss the polarization in the R and I band of 4 ultra cool dwarfs. Methods.We report linear polarization measurements of 4 ultra cool dwarfs in the R and I bands using the Intermediate dispersion Spectrograph and Imaging System (ISIS) mounted on the 4.2m William Herschel Telescope (WHT). Results.As predicted by theoretical models, we find a higher degree of polarization in the R band when compared to polarization in the I band for 3/4 of these ultra cool dwarfs. This suggests that dust scattering asymmetry is caused by oblateness >.We also show how these measurements fit the theoretical models. A case for variability of linear polarization is found, which suggests the presence of randomly distributed dust clouds. We also discuss one case for the presence of a cold debris disk.Comment: 7 pages, 2 figure

    Detection of Formaldehyde Towards the Extreme Carbon Star IRC+10216

    Full text link
    We report the detection of H2CO (formaldehyde) around the carbon-rich AGB star, IRC+10216. We find a fractional abundance with respect to molecular hydrogen of x(H2CO)= (1.3 {+1.5}{-0.8}) x 10^{-8}. This corresponds to a formaldehyde abundance with respect to water vapor of x(H2CO)/x(H2O)=(1.1 +/- 0.2) x 10^{-2}, in line with the formaldehyde abundances found in Solar System comets, and indicates that the putative extrasolar cometary system around IRC+10216 may have a similar chemical composition to Solar System comets. However, we also failed to detect CH3OH (methanol) around IRC+10216 and our upper limit of x(CH3OH)/x(H2O) < 7.7 x 10^{-4}, (3 sigma), indicates that methanol is substantially underabundant in IRC+10216, compared to Solar System comets. We also conclude, based on offset observations, that formaldehyde has an extended source in the envelope of IRC+10216 and may be produced by the photodissociation of a parent molecule, similar to the production mechanism for formaldehyde in Solar System comet comae. Preliminary mapping observations also indicate a possible asymmetry in the spatial distribution of formaldehyde around IRC+10216, but higher signal-to-noise observations are required to confirm this finding. This study is based on observations carried out with the IRAM 30m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain). (abridged)Comment: accepted to ApJ, 45 pages, 11 figure

    Investigation of viscous coupling effects in three-phase flow by lattice Boltzmann direct simulation and machine learning technique

    Get PDF
    The momentum transfer across fluid interfaces in multi-phase flow leads to a non-negligible viscous coupling effect. In this study, we use the lattice Boltzmann method (LBM) as a direct simulator to solve the three-phase flow at pore scale. The viscous coupling effects are investigated for various fluid configurations in simple pore geometries with different conditions in terms of saturation, wettability and viscosity ratio. It is found that the viscous coupling effect can be significant for certain configurations. A parametric modification factor for conventional three-phase conductance model is then proposed to estimate the viscous coupling effect. The modification factor as a function of viscosity ratios can be easily incorporated into existing pore network model (PNM) to eliminate errors from viscous coupling effect. Moreover, an elegant approach using machine learning technique is proposed to predict the multi-phase permeability by a trained Artificial Neural Network (ANN) from the direct simulation database. Such data-driven approach can be extended to develop a more sophisticated PNM for a better prediction of transport properties taking account of the viscous coupling effects
    • 

    corecore