24 research outputs found

    Effects of Environmentally Relevant Residual Levels of Diluted Bitumen on Wild Fathead Minnows (Pimephales promelas).

    Get PDF
    Transportation of crude oil across North America’s boreal ecozone creates the potential for spills in freshwater where less is known about the sensitivity of resident fish than for marine systems. The sensitivity of wild fathead minnows (FHM) to residual concentrations (ppb range) of the water accommodated fraction (WAF) of diluted bitumen (dilbit) was assessed by exposing them for 21 days followed by a 14 days depuration. Target concentrations were well below detection limits for GC–MS, but were estimated by dilution factor (1:100,000 and 1:1,000,000 WAF:water) to contain less than 0.0003 μg/L of polycyclic aromatic compounds. Confinement and handling stress caused by transfer of wild fish into tanks much smaller than their natural range resulted in mortality and lower body condition among all groups, but interactive effects of oil exposures still resulted in females with smaller cortical alveolar oocytes, and males with larger testicular lobe lumen sizes. Additional studies examining the compounded effects of stress and environmentally relevant oil exposures in wild fishes are needed

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    The 2023/24 VIEWS Prediction challenge: Predicting the number of fatalities in armed conflict, with uncertainty

    Get PDF
    Governmental and nongovernmental organizations have increasingly relied on early-warning systems of conflict to support their decisionmaking. Predictions of war intensity as probability distributions prove closer to what policymakers need than point estimates, as they encompass useful representations of both the most likely outcome and the lower-probability risk that conflicts escalate catastrophically. Point-estimate predictions, by contrast, fail to represent the inherent uncertainty in the distribution of conflict fatalities. Yet, current early warning systems are preponderantly focused on providing point estimates, while efforts to forecast conflict fatalities as a probability distribution remain sparse. Building on the predecessor VIEWS competition, we organize a prediction challenge to encourage endeavours in this direction. We invite researchers across multiple disciplinary fields, from conflict studies to computer science, to forecast the number of fatalities in state-based armed conflicts, in the form of the UCDP ‘best’ estimates aggregated to two units of analysis (country-months and PRIO-GRID-months), with estimates of uncertainty. This article introduces the goal and motivation behind the prediction challenge, presents a set of evaluation metrics to assess the performance of the forecasting models, describes the benchmark models which the contributions are evaluated against, and summarizes the salient features of the submitted contributions

    Common, low-frequency, rare, and ultra-rare coding variants contribute to COVID-19 severity

    Get PDF
    The combined impact of common and rare exonic variants in COVID-19 host genetics is currently insufficiently understood. Here, common and rare variants from whole-exome sequencing data of about 4000 SARS-CoV-2-positive individuals were used to define an interpretable machine-learning model for predicting COVID-19 severity. First, variants were converted into separate sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. The Boolean features selected by these logistic models were combined into an Integrated PolyGenic Score that offers a synthetic and interpretable index for describing the contribution of host genetics in COVID-19 severity, as demonstrated through testing in several independent cohorts. Selected features belong to ultra-rare, rare, low-frequency, and common variants, including those in linkage disequilibrium with known GWAS loci. Noteworthily, around one quarter of the selected genes are sex-specific. Pathway analysis of the selected genes associated with COVID-19 severity reflected the multi-organ nature of the disease. The proposed model might provide useful information for developing diagnostics and therapeutics, while also being able to guide bedside disease management. © 2021, The Author(s)

    Genetic mechanisms of critical illness in Covid-19.

    Get PDF
    Host-mediated lung inflammation is present,1 and drives mortality,2 in critical illness caused by Covid-19. Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development.3 Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study(GWAS) in 2244 critically ill Covid-19 patients from 208 UK intensive care units (ICUs). We identify and replicate novel genome-wide significant associations, on chr12q24.13 (rs10735079, p=1.65 [Formula: see text] 10-8) in a gene cluster encoding antiviral restriction enzyme activators (OAS1, OAS2, OAS3), on chr19p13.2 (rs2109069, p=2.3 [Formula: see text] 10-12) near the gene encoding tyrosine kinase 2 (TYK2), on chr19p13.3 (rs2109069, p=3.98 [Formula: see text] 10-12) within the gene encoding dipeptidyl peptidase 9 (DPP9), and on chr21q22.1 (rs2236757, p=4.99 [Formula: see text] 10-8) in the interferon receptor gene IFNAR2. We identify potential targets for repurposing of licensed medications: using Mendelian randomisation we found evidence in support of a causal link from low expression of IFNAR2, and high expression of TYK2, to life-threatening disease; transcriptome-wide association in lung tissue revealed that high expression of the monocyte/macrophage chemotactic receptor CCR2 is associated with severe Covid-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms, and mediators of inflammatory organ damage in Covid-19. Both mechanisms may be amenable to targeted treatment with existing drugs. Large-scale randomised clinical trials will be essential before any change to clinical practice

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Effect of cigarette smoking on serum anti-Mullerian hormone and antral follicle count in women seeking fertility treatment: a prospective cross-sectional study

    Get PDF
    Objectives The relationship between smoking and ovarian reserve markers is inconclusive. The primary objective of our study was to assess the effect of cigarette smoking on the quantitative ovarian reserve parameters, serum anti-Mullerian hormone (AMH) and antral follicle count (AFC) as relevant to prediction of fertility outcomes in women seeking fertility treatment. Our secondary aims were to validate self-reported smoking behaviour using biomarkers and evaluate the association between biomarkers of ovarian reserve (serum AMH and AFC) with biomarkers of smoking exposure (breath carbon monoxide (CO) and urine cotinine levels). Design Prospective, cross-sectional study. Setting Single tertiary care fertility centre. Participants Women ≤35 years seeking fertility treatment. Primary outcome measures Serum AMH and AFC. Results Significant differences were found among current smokers, ex-smokers and never smokers for breath CO (F(2,97)=33.32, p<0.0001) and urine cotinine levels (p<0.001). However, no significant differences were found either for serum AMH (F(2,91)=1.19, p=0.309) or total AFC (F(2,81)=0.403, p=0.670) among the three groups. There was no significant correlation between pack years of smoking and serum AMH (r=−0.212, n=23, p=0.166) or total AFC (r=−0.276, n=19, p=0.126). No significant correlation was demonstrated between breath CO and serum AMH (r=0.082, n=94, p=0.216) or total AFC (r=0.096, n=83, p=0.195). Similarly, no significant correlation was demonstrated between urine cotinine levels and serum AMH (r=0.146, n=83, p=0.095) or total AFC (r=−0.027, n=77, p=0.386). Conclusion We did not find a statistically significant difference in quantitative ovarian reserve markers between current smokers, ex-smokers and never smokers which would be clinically meaningful in our study population. We confirmed that self-reported smoking correlates well with quantitatively measured biomarkers of smoking. This validated the self-reported comparison groups to ensure a valid comparison of outcome measures. There was no significant association between biomarkers of smoking and biomarkers of ovarian reserve. We were also unable to demonstrate a correlation between the lifetime smoking exposure and ovarian reserve

    Mapping the human genetic architecture of COVID-19

    Get PDF
    The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3–7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease
    corecore