19 research outputs found

    Use of complementary and alternative medicines by a sample of Turkish women for infertility enhancement: a descriptive study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Infertility patients are a vulnerable group that often seeks a non-medical solution for their failure to conceive. World-wide, women use CAM for productive health, but only a limited number of studies report on CAM use to enhance fertility. Little is known about traditional and religious forms of therapies that are used in relation to conventional medicine in Turkey. We investigated the prevalence and types of complementary and alternative medicine (CAM) used by infertile Turkish women for fertility enhancement.</p> <p>Methods</p> <p>A face-to-face questionnaire inquiring demographic information and types of CAM used for fertility enhancement were completed by hundred infertility patients admitted to a primary care family planning centre in Van, Turkey between January and July 2009.</p> <p>Results</p> <p>The vast majority of infertile women had used CAM at least once for infertility. CAM use included religious interventions, herbal products and recommendations of traditional "hodja's" (faith healers). Of these women, 87.8% were abused in the last 12 months, 36.6% felt not being supported by her partner and 80.5% had never spoken with a physician about CAM.</p> <p>Conclusions</p> <p>Infertile Turkish women use complementary medicine frequently for fertility enhancement and are in need of information about CAM. Religious and traditional therapies are used as an adjunct to, rather than a substitute for, conventional medical therapy. Physicians need to approach fertility patients with sensitivity and should be able to council their patients about CAM accordingly.</p

    Variations in cyclotide expression in Viola species

    No full text
    Cyclotides, a family of approximately 50 mini-proteins isolated from various Violaceae and Rubiaceae plants, are characterized by their circular peptide backbone and six conserved cysteine residues arranged in a cystine knot motif. Cyclotides show a wide range of biological activities, making them interesting targets for both pharmaceutical and agrochemical research, but little is known about their natural function and the events that trigger their expression. An investigation of the geographical and seasonal variations of cyclotide profiles has been performed, using the native Australian violet, Viola hederacea, and the Swedish sweet violet, Viola odorata, as model plants. The results showed that in the Australian violet the relative peptide levels of some cyclotides remained almost constant throughout the year, while other cyclotides were present only at certain times of the year. Therefore, it appears that V. hederacea expresses a basic armory of cyclotides as well as special add-ons whose levels are influenced by external factors. In the Swedish violet, cyclotide levels were increased up to 14 times during the warmest period of the year. The larger variation in expression levels of the Swedish plants may be a reflection of a greater climatic variation

    Discovery of an unusual biosynthetic origin for circular proteins in legumes

    No full text
    Cyclotides are plant-derived proteins that have a unique cyclic cystine knot topology and are remarkably stable. Their natural function is host defense, but they have a diverse range of pharmaceutically important activities, including uterotonic activity and anti-HIV activity, and have also attracted recent interest as templates in drug design. Here we report an unusual biosynthetic origin of a precursor protein of a cyclotide from the butterfly pea, Clitoria ternatea, a representative member of the Fabaceae plant family. Unlike all previously reported cyclotides, the domain corresponding to the mature cyclotide from this Fabaceae plant is embedded within an albumin precursor protein. We confirmed the expression and correct processing of the cyclotide encoded by the Cter M precursor gene transcript following extraction from C. ternatea leaf and sequencing by tandem mass spectrometry. The sequence was verified by direct chemical synthesis and the peptide was found to adopt a classic knotted cyclotide fold as determined by NMR spectroscopy. Seven additional cyclotide sequences were also identified from C. ternatea leaf and flower, five of which were unique. Cter M displayed insecticidal activity against the cotton budworm Helicoverpa armigera and bound to phospholipid membranes, suggesting its activity is modulated by membrane disruption. The Fabaceae is the third largest family of flowering plants and many Fabaceous plants are of huge significance for human nutrition. Knowledge of Fabaceae cyclotide gene transcripts should enable the production of modified cyclotides in crop plants for a variety of agricultural or pharmaceutical applications, including plant-produced designer peptide drugs

    Diversity in the disulfide folding pathways of cystine knot peptides

    No full text
    The plant cyclotides are a fascinating family of circular proteins that contain a cyclic cystine knot motif (CCK). This unique family was discovered only recently but contains over 50 known sequences to date. Various biological activities are associated with these peptides including antimicrobial and insecticidal activity. The knotted topology and cyclic nature of the cyclotides; poses interesting questions about the folding mechanisms and how the knotted arrangement of disulfide bonds is formed. Some studies have been performed on related inhibitor cystine knot (ICK) containing peptides, but little is known about the folding mechanisms of CCK molecules. We have examined the oxidative refolding and reductive unfolding of the prototypic member of the cyclotide family, kalata B1. Analysis of the rates of formation of the intermediates along the reductive unfolding pathway highlights the stability conferred by the cystine knot motif. Significant differences are observed between the folding of kalata B1 and an acyclic cystine knot protein, EETI-II, suggesting that the circular backbone has a significant influence in directing the folding pathway

    Plant peptide toxins from nonmarine environments

    No full text

    Cyclotides: Natural, Circular Plant Peptides that possess significant activity against Gastrointestinal nematode parasites of sheep

    No full text
    The cyclotides are a novel family of backbone-cyclized cystine-knot containing peptides from plants that have been shown to possess insecticidal activity against Helicoverpa larvae, an important pest of corn and cotton. In the current study, we investigated the in vitro effects of the cycloides on the viability of egg, larval, and adult life stages of two species of economically important gastrointestinal nermatode parasites of livestock, Hermonchus contortus and Trichostrongylus colubriformis
    corecore