148 research outputs found

    Immunobiological effects of gemcitabine and capecitabine combination chemotherapy in advanced pancreatic ductal adenocarcinoma

    Get PDF
    Background: Preclinical studies suggest that chemotherapy may enhance the immune response against pancreatic cancer. Methods: The levels of granulocyte macrophage-colony-stimulating factor (GM-CSF) and interleukin-6 (IL-6) and the associated inflammatory marker C-reactive protein (CRP) were assessed in 38 patients receiving gemcitabine and capecitabine combination chemotherapy for advanced pancreatic cancer within the TeloVac trial. Apoptosis (M30) and total immune response (delayed-type hypersensitivity and/or T-cell response) were also assessed and levels of apoptosis induction correlated with immune response. The telomerase GV1001 vaccine was given either sequentially (n=18) or concomitantly (n=24) with the combination chemotherapy. Results: There were no differences between baseline and post-treatment levels of CRP (P=0.19), IL-6 (P=0.19) and GM-CSF (P=0.71). There was a positive correlation between post-chemotherapy CRP and IL-6 levels (r=0.45, P=0.005) and between CRP with carbohydrate antigen-19-9 (CA19-9) levels at baseline (r=0.45, P=0.015) and post treatment (r=0.40, P=0.015). The change in CRP and IL-6 levels was positively correlated (r=0.40, P=0.012). Hazard ratios (95% CI) for baseline CA19-9 (1.30 (1.07–1.59), P=0.009) and CRP (1.55 (1.00–2.39), P=0.049) levels were each independently predictive of survival. The M30 mean matched differences between pre- and post-chemotherapy showed evidence of apoptosis in both the sequential (P=0.058) and concurrent (P=0.0018) chemoimmunotherapy arms. Respectively, 5 of 10 and 9 of 20 patients had a positive immune response but there was no association with apoptosis. Conclusions: Combination gemcitabine and capecitabine chemotherapy did not affect circulating levels of GM-CSF, IL-6 and CRP. Chemotherapy-induced apoptosis was not associated with the immunogenicity induced by the GV1001 vaccine in advanced pancreatic cancer

    Variation in NOD2 Augments Th2- and Th17 Responses to Myelin Basic Protein in Multiple Sclerosis

    Get PDF
    Variations in the gene for the nucleotide-binding oligomerisation domain (NOD) 2 have been associated with Crohn's disease but not multiple sclerosis (MS). Here we investigate the effect of three polymorphisms in the NOD2 gene (rs5743277, rs2066842 and rs5743291) on cytokine production and CD4+ T cell proliferation elicited by human myelin basic protein (MBP) in blood mononuclear cell (MNC) cultures from 29 patients with MS. No polymorphism was observed at rs5743277. No associations with the rs2066842 polymorphism were found. Concerning rs5743291, none were homozygous for the minor allele. Seven of 29 (24%) patients were heterozygous, and five of these (71%) exhibited increased MBP-induced CD4+ T cell proliferation versus four of 22 (18%), who were homozygous for the major allele (p<0.04). Interleukin (IL)-5 was induced by MBP in MNC from the same five carriers versus two (9%) homozygotes (p<0.004); four carriers (57%) versus three non-carriers (14%) exhibited IL-17 responses to MBP (p<0.04). By contrast, we found no association between the polymorphisms investigated and interferon-gamma-, tumor necrosis factor-alpha-, IL-2, -4- or IL-10 responses to MBP. These results indicate that the rs5743291 polymorphism influences T helper (Th) cell 2- and Th17 cell responses in MNC from MS patients

    An IFNγ/CXCL2 regulatory pathway determines lesion localization during EAE

    Full text link
    Abstract Background Myelin oligodendrocyte glycoprotein (MOG)-reactive T-helper (Th)1 cells induce conventional experimental autoimmune encephalomyelitis (cEAE), characterized by ascending paralysis and monocyte-predominant spinal cord infiltrates, in C57BL/6 wildtype (WT) hosts. The same T cells induce an atypical form of EAE (aEAE), characterized by ataxia and neutrophil-predominant brainstem infiltrates, in syngeneic IFNγ receptor (IFNγR)-deficient hosts. Production of ELR+ CXC chemokines within the CNS is required for the development of aEAE, but not cEAE. The cellular source(s) and localization of ELR+ CXC chemokines in the CNS and the IFNγ-dependent pathways that regulate their production remain to be elucidated. Methods The spatial distribution of inflammatory lesions and CNS expression of the ELR+ CXC chemokines, CXCL1 and CXCL2, were determined via immunohistochemistry and/or in situ hybridization. Levels of CXCL1 and CXCL2, and their cognate receptor CXCR2, were measured in/on leukocyte subsets by flow cytometric and quantitative PCR (qPCR) analysis. Bone marrow neutrophils and macrophages were cultured with inflammatory stimuli in vitro prior to measurement of CXCL2 and CXCR2 by qPCR or flow cytometry. Results CNS-infiltrating neutrophils and monocytes, and resident microglia, are a prominent source of CXCL2 in the brainstem of IFNγRKO adoptive transfer recipients during aEAE. In WT transfer recipients, IFNγ directly suppresses CXCL2 transcription in microglia and myeloid cells, and CXCR2 transcription in CNS-infiltrating neutrophils. Consequently, infiltration of the brainstem parenchyma from the adjacent meninges is blocked during cEAE. CXCL2 directly stimulates its own expression in cultured neutrophils, which is enhanced by IL-1 and suppressed by IFNγ. Conclusions We provide evidence for an IFNγ-regulated CXCR2/CXCL2 autocrine/paracrine feedback loop in innate immune cells that determines the location of CNS infiltrates during Th1-mediated EAE. When IFNγ signaling is impaired, myeloid cell production of CXCL2 increases, which promotes brainstem inflammation and results in clinical ataxia. IFNγ, produced within the CNS of WT recipients, suppresses myeloid cell CXCR2 and CXCL2 production, thereby skewing the location of neuroinflammatory infiltrates to the spinal cord and the clinical phenotype to an ascending paralysis. These data reveal a novel mechanism by which IFNγ and CXCL2 interact to direct regional recruitment of leukocytes in the CNS, resulting in distinct clinical presentations.https://deepblue.lib.umich.edu/bitstream/2027.42/145159/1/12974_2018_Article_1237.pd

    Increased CD8+ T cell responses to apoptotic T cell-associated antigens in multiple sclerosis.

    Get PDF
    BACKGROUND: Here, we evaluated the hypothesis that CD8(+) T cell responses to caspase-cleaved antigens derived from effector T cells undergoing apoptosis, may contribute to multiple sclerosis (MS) immunopathology. METHODS: The percentage of autoreactive CD8(+) T effector cells specific for various apoptotic T cell-associated self-epitopes (apoptotic epitopes) were detected in the peripheral blood and cerebrospinal fluid (CSF) by both enzyme-linked immunospot and dextramers of class I molecules complexed with relevant apoptotic epitopes. Moreover, the capacity of dextramer(+) CD8(+) T cells to produce interferon (IFN)-γ and/or interleukin (IL)-17 in response to the relevant apoptotic epitopes was evaluated by the intracellular cytokine staining. Cross-presentation assay of apoptotic T cells by dendritic cells was also evaluated ex vivo. RESULTS: We found that polyfunctional (IFN-γ and/or IL-17 producing) autoreactive CD8(+) T cells specific for apoptotic epitopes were represented in MS patients with frequencies significantly higher than in healthy donors. These autoreactive CD8(+) T cells with a strong potential to produce IFN-γ or IL-17 in response to the relevant apoptotic epitopes were significantly accumulated in the CSF from the same patients. In addition, the frequencies of these autoreactive CD8(+) T cells correlated with the disease disability. Cross-presentation assay revealed that caspase-cleaved cellular proteins are required to activate apoptotic epitope-specific CD8(+) T cells ex vivo. CONCLUSION: Taken together, these data indicate that apoptotic epitope-specific CD8(+) T cells with strong inflammatory potential are recruited at the level of the inflammatory site, where they may be involved in MS immunopathology through the production of high levels of inflammatory cytokines

    T Cells Specifically Targeted to Amyloid Plaques Enhance Plaque Clearance in a Mouse Model of Alzheimer's Disease

    Get PDF
    Patients with Alzheimer's disease (AD) exhibit substantial accumulation of amyloid-β (Aβ) plaques in the brain. Here, we examine whether Aβ vaccination can facilitate the migration of T lymphocytes to specifically target Aβ plaques and consequently enhance their removal. Using a new mouse model of AD, we show that immunization with Aβ, but not with the encephalitogenic proteolipid protein (PLP), results in the accumulation of T cells at Aβ plaques in the brain. Although both Aβ-reactive and PLP-reactive T cells have a similar phenotype of Th1 cells secreting primarily IFN-γ, the encephalitogenic T cells penetrated the spinal cord and caused experimental autoimmune encephalomyelitis (EAE), whereas Aβ T cells accumulated primarily at Aβ plaques in the brain but not the spinal cord and induced almost complete clearance of Aβ. Furthermore, while a single vaccination with Aβ resulted in upregulation of the phagocytic markers triggering receptors expressed on myeloid cells-2 (TREM2) and signal regulatory protein-β1 (SIRPβ1) in the brain, it caused downregulation of the proinflammatory cytokines TNF-α and IL-6. We thus suggest that Aβ deposits in the hippocampus area prioritize the targeting of Aβ-reactive but not PLP-reactive T cells upon vaccination. The stimulation of Aβ-reactive T cells at sites of Aβ plaques resulted in IFN-γ-induced chemotaxis of leukocytes and therapeutic clearance of Aβ

    Expansion in CD39(+) CD4(+) Immunoregulatory T Cells and Rarity of Th17 Cells in HTLV-1 Infected Patients Is Associated with Neurological Complications

    Get PDF
    HTLV-1 infection is associated with several inflammatory disorders, including the neurodegenerative condition HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). It is unclear why a minority of infected subjects develops HAM/TSP. CD4(+) T cells are the main target of infection and play a pivotal role in regulating immunity to HTLV and are hypothesized to participate in the pathogenesis of HAM/TSP. the CD39 ectonucleotidase receptor is expressed on CD4(+) T cells and based on co-expression with CD25, marks T cells with distinct regulatory (CD39(+)CD25(+)) and effector (CD39(+)CD25(-)) function. Here, we investigated the expression of CD39 on CD4(+) T cells from a cohort of HAM/TSP patients, HTLV-1 asymptomatic carriers (AC), and matched uninfected controls. the frequency of CD39(+)CD4(+) T cells was increased in HTLV-1 infected patients, regardless of clinical status. More importantly, the proportion of the immunostimulatory CD39(+)CD25(-) CD4+ T-cell subset was significantly elevated in HAM/TSP patients as compared to AC and phenotypically had lower levels of the immunoinhibitory receptor, PD-1. We saw no difference in the frequency of CD39(+)CD25(+) regulatory (Treg) cells between AC and HAM/TSP patients. However, these cells transition from being anergic to displaying a polyfunctional cytokine response following HTLV-1 infection. CD39(-)CD25(+) T cell subsets predominantly secreted the inflammatory cytokine IL-17. We found that HAM/TSP patients had significantly fewer numbers of IL-17 secreting CD4(+) T cells compared to uninfected controls. Taken together, we show that the expression of CD39 is upregulated on CD4(+) T cells HAM/TSP patients. This upregulation may play a role in the development of the proinflammatory milieu through pathways both distinct and separate among the different CD39 T cell subsets. CD39 upregulation may therefore serve as a surrogate diagnostic marker of progression and could potentially be a target for interventions to reduce the development of HAM/TSP.National Institute of Allergies and Infectious DiseasesNational Institutes of HealthUniversity of CaliforniaSan Francisco-Gladstone Institute of Virology & Immunology Center for AIDS ResearchFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)John E. Fogarty International CenterNational Center for Research ResourcesNational Institute of General Medical Sciences from the National Institutes of HealthUniv Calif San Francisco, Dept Med, Div Expt Med, San Francisco, CA 94143 USAUniv Hawaii, John A Burns Sch Med, Dept Trop Med, Hawaii Ctr AIDS, Honolulu, HI 96822 USAUniv São Paulo, Sch Med, Deparment Infect Dis, São Paulo, BrazilUniv São Paulo, Sch Med, Div Clin Immunol & Allergy, São Paulo, BrazilFuncacao Prosangue, Hemoctr São Paulo, Mol Biol Lab, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Translat Med, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Translat Med, São Paulo, BrazilSan Francisco-Gladstone Institute of Virology & Immunology Center for AIDS Research: P30 AI027763FAPESP: 04/15856-9/KallasFAPESP: 2010/05845-0/KallasFAPESP: 11/12297-2/SanabaniJohn E. Fogarty International Center: D43 TW00003National Center for Research Resources: 5P20RR016467-11National Institute of General Medical Sciences from the National Institutes of Health: 8P20GM103466-11Web of Scienc

    A Crucial Role for Infected-Cell/Antibody Immune Complexes in the Enhancement of Endogenous Antiviral Immunity by Short Passive Immunotherapy

    Get PDF
    Antiviral monoclonal antibodies (mAbs) represent promising therapeutics. However, most mAbs-based immunotherapies conducted so far have only considered the blunting of viral propagation and not other possible therapeutic effects independent of virus neutralization, namely the modulation of the endogenous immune response. As induction of long-term antiviral immunity still remains a paramount challenge for treating chronic infections, we have asked here whether neutralizing mAbs can, in addition to blunting viral propagation, exert immunomodulatory effects with protective outcomes. Supporting this idea, we report here that mice infected with the FrCasE murine retrovirus on day 8 after birth die of leukemia within 4–5 months and mount a non-protective immune response, whereas those rapidly subjected to short immunotherapy with a neutralizing mAb survive healthy and mount a long-lasting protective antiviral immunity with strong humoral and cellular immune responses. Interestingly, the administered mAb mediates lysis of infected cells through an antibody-dependent cell cytotoxicity (ADCC) mechanism. In addition, it forms immune complexes (ICs) with infected cells that enhance antiviral CTL responses through FcγR-mediated binding to dendritic cells (DCs). Importantly, the endogenous antiviral antibodies generated in mAb-treated mice also display the same properties, allowing containment of viral propagation and enhancement of memory cellular responses after disappearance of the administered mAb. Thus, our data demonstrate that neutralizing antiviral mAbs can act as immunomodulatory agents capable of stimulating a protective immunity lasting long after the end of the treatment. They also show an important role of infected-cells/antibody complexes in the induction and the maintenance of protective immunity through enhancement of both primary and memory antiviral T-cell responses. They also indicate that targeting infected cells, and not just viruses, by antibodies can be crucial for elicitation of efficient, long-lasting antiviral T-cell responses. This must be considered when designing antiviral mAb-based immunotherapies

    GM-CSF-Producing Th Cells in Rats Sensitive and Resistant to Experimental Autoimmune Encephalomyelitis

    Get PDF
    Given that granulocyte macrophage colony-stimulating factor (GM-CSF) is identified as the key factor to endow auto-reactive Th cells with the potential to induce neuroinflammation in experimental autoimmune encephalomyelitis (EAE) models, the frequency and phenotype of GM-CSF-producing (GM-CSF+) Th cells in draining lymph nodes (dLNs) and spinal cord (SC) of Albino Oxford (AO) and Dark Agouti (DA) rats immunized for EAE were examined. The generation of neuroantigen-specific GM-CSF+ Th lymphocytes was impaired in dLNs of AO rats (relatively resistant to EAE induction) compared with their DA counterparts (susceptible to EAE) reflecting impaired CD4+ lymphocyte proliferation and less supportive of GM-CSF+ Th cell differentiation dLN cytokine microenvironment. Immunophenotyping of GM-CSF+ Th cells showed their phenotypic heterogeneity in both strains and revealed lower frequency of IL-17+ IFN-gamma+, IL-17+ IFN-gamma-, and IL-17-IFN-gamma+ cells accompanied by higher frequency of IL-17-IFN-gamma- cells among them in AO than in DA rats. Compared with DA, in AO rats was also found (i) slightly lower surface density of CCR2 (drives accumulation of highly pathogenic GM-CSF+ IFN-gamma+ Th17 cells in SC) on GM-CSF+ IFN-gamma+ Th17 lymphocytes from dLNs, and (ii) diminished CCL2 mRNA expression in SC tissue, suggesting their impaired migration into the SC. Moreover, dLN and SC cytokine environments in AO rats were shown to be less supportive of GM-CSF+ IFN-gamma+ Th17 cell differentiation (judging by lower expression of mRNAs for IL-1 beta, IL-6 and IL-23/p19). In accordance with the (i) lower frequency of GM-CSF+ Th cells in dLNs and SC of AO rats and their lower GM-CSF production, and (ii) impaired CCL2 expression in the SC tissue, the proportion of proinflammatory monocytes among peripheral blood cells and their progeny (CD45(hi) cells) among the SC CD11b+ cells were reduced in AO compared with DA rats. Collectively, the results indicate that the strain specificities in efficacy of several mechanisms controlling (auto) reactive CD4+ lymphocyte expansion/differentiation into the cells with pathogenic phenotype and migration of the latter to the SC contribute to AO rat resistance to EAE

    CTRP6 is an endogenous complement regulator that can effectively treat induced arthritis

    Get PDF
    The complement system is important for the host defence against infection as well as for the development of inflammatory diseases. Here we show that C1q/TNF-related protein 6 (CTRP6; gene symbol C1qtnf6) expression is elevated in mouse rheumatoid arthritis (RA) models. C1qtnf6 -/- mice are highly susceptible to induced arthritis due to enhanced complement activation, whereas C1qtnf6-transgenic mice are refractory. The Arthus reaction and the development of experimental autoimmune encephalomyelitis are also enhanced in C1qtnf6 -/- mice and C1qtnf6 -/- embryos are semi-lethal. We find that CTRP6 specifically suppresses the alternative pathway of the complement system by competing with factor B for C3(H 2 O) binding. Furthermore, treatment of arthritis-induced mice with intra-articular injection of recombinant human CTRP6 cures the arthritis. CTRP6 is expressed in human synoviocytes, and CTRP6 levels are increased in RA patients. These results indicate that CTRP6 is an endogenous complement regulator and could be used for the treatment of complement-mediated diseases
    corecore