330 research outputs found

    The effects of sevelamer hydrochloride and calcium carbonate on kidney calcification in uremic rats

    Get PDF
    The control of serum phosphorus (P) and calcium-phosphate (Ca x P) product is critical to the prevention of ectopic calcification in chronic renal failure (CRF). Whereas calcium (Ca) salts, the most commonly used phosphate binders, markedly increase serum Ca and positive Ca balance, the new calcium- and aluminum-free phosphate binder, sevelamer hydrochloride (RenaGel), reduces serum P without altering serum Ca in hemodialysis patients. Using an experimental model of CRF, these studies compare sevelamer and calcium carbonate (CaCO(3)) in the control of serum P, secondary hyperparathyroidism (SH), and ectopic calcifications. 5/6 nephrectomized rats underwent one of the following treatments for 3 mo: uremic + high-P diet (U-HP); UHP + 3% CaCO(3) (U-HP+C); UHP + 3% sevelamer (U-HP+S). Sevelamer treatment controlled serum P independent of increases in serum Ca, thus reducing serum Ca x P product and further deterioration of renal function, as indicated by the highest creatinine clearances. Sevelamer was as effective as CaCO(3) in the control of high-P-induced SH, as shown by similar serum PTH levels, parathyroid (PT) gland weight, and markers of PT hyperplasia. Also, both P binders elicited similar efficacy in reducing the myocardial and hepatic calcifications induced by uremia. However, sevelamer caused a dramatic reduction of renal Ca deposition (29.8 +/- 8.6 micro g/g wet tissue) compared with both U-HP (175.5 +/- 45.7 micro g/g wet tissue, P < 0.01) and the U-HP+C (58.9 +/- 13.7 micro g/g wet tissue, P < 0.04). Histochemical analyses using Von Kossa and Alizarin red S staining of kidney sections confirmed these findings. The high number of foci of calcification in the kidney of uremic controls (108 +/- 25) was reduced to 33.0 +/- 11.3 by CaCO(3) and decreased even further with sevelamer (16.4 +/- 8.9, P < 0.02 versus CaCO(3)). Importantly, the degree of tubulointerstitial fibrosis was also markedly lower in U-HP+S (5%) compared with either U-HP+C (30%) or U-HP (50%). It is concluded that in experimental CRF in rats, despite a similar control of serum P and SH, sevelamer is more effective than CaCO(3) in preventing renal Ca deposition and tubulointerstitial fibrosis, including better preservation of renal function. These findings cannot be extrapolated to human disease, and further studies in patients are necessary to determine the benefits of either P binder

    Differential catabolism of 22-oxacalcitriol and 1,25-dihydroxyvitamin D3 by normal human peripheral monocytes

    Get PDF
    22-Oxacalcitriol [1,25-(OH)2-22oxa-D3] mimics the action of 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] in a variety of target tissues, including the systemic control of calcitriol metabolism. Similar to 1,25-(OH)2D3, 1,25-(OH)2-22oxa-D3 decreases the rate of 1,25-(OH)2D3 synthesis and accelerates its metabolic clearance rate. We have previously shown that in normal human monocytes, physiological concentrations of 1,25-(OH)2D3 and 1,25-(OH)2-22oxa-D3 determine identical suppression of 1,25-(OH)2D3 synthesis. Moreover, both sterols have a similar potency to induce vitamin D degradation through stimulation of the C24-hydroxylation pathway. In this study, we examined the ability of normal human monocytes to metabolize 1,25-(OH)2-22oxa-D3 and whether the enzymes involved are the same as those that catabolize 1,25-(OH)2D3. Time-course experiments demonstrated no detectable basal catabolic activity. However, exogenous 1,25-(OH)2D3 at physiological concentrations induced 1,25-(OH)2-22oxa-D3 degradation by normal human monocytes. Competition experiments showed that a 10-fold molar excess of unlabeled 1,25-(OH)2D3 inhibited tritiated-1,25-(OH)2-22oxa-D3 catabolism by 85%, whereas a 10-fold excess of unlabeled 1,25-(OH)2-22oxa-D3 reduced tritiated-1,25-(OH)2-22oxa-D3 catabolism by 33%. In contrast, although a 10-fold excess of unlabeled 1,25-(OH)2D3 reduced tritiated 1,25-(OH)2D3 catabolism by 60%, a 1000-fold excess of 1,25-(OH)2-22oxa-D3 was required to reduce tritiated 1,25-(OH)2D3 catabolism to this degree. The apparent Km for 1,25-(OH)2-22oxa-D3 was significantly higher than that of 1,25-(OH)2D3 (2.0 +/- 0.8 0.9 +/- 0.2 nM, respectively; P < 0.001) for the catabolic pathway induced by physiological concentrations of 1,25-(OH)2D3. Moreover, the presence of 0.65 nM 1,25-(OH)2D3 caused an additional increase in the Km for 1,25-(OH)2-22oxa-D3 (3.2 +/- 0.8 nM). These data suggest that 1,25-(OH)2-22oxa-D3 may be less accessible than 1,25-(OH)2D3 to the hydroxylases involved in vitamin D catabolism. The resulting prolonged biological half-life of the analog in certain target tissues may be involved in its selectivity

    Comparison of total parathyroidectomy without autotransplantation and without thymectomy versus total parathyroidectomy with autotransplantation and with thymectomy for secondary hyperparathyroidism: TOPAR PILOT-Trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Secondary hyperparathyroidism (sHPT) is common in patients with chronic renal failure. Despite the initiation of new therapeutic agents, several patients will require parathyroidectomy (PTX). Total PTX with autotransplantation of parathyroid tissue (TPTX+AT) and subtotal parathyroidectomy (SPTX) are currently considered as standard surgical procedures in the treatment of sHPT. Recurrencerates after TPTX+AT or SPTX are between 10% and 12% (median follow up: 36 months).</p> <p>Recent retrospective studies demonstrated a lower rate of recurrent sHPT of 0–4% after PTX without autotransplantation and thymectomy (TPTX) with no higher morbidity when compared to the standard procedures. The observed superiority of TPTX is flawed due to different definitions of outcomes, varying follow up periods and different surgical treatment strategies (with and without thymectomy).</p> <p>Methods/Design</p> <p>Patients with sHPT (intact parathyroid hormone > 10 times above the upper limit of normal) on long term dialysis (>12 months) will be randomized either to TPTX or TPTX+AT and followed for 36 months. Outcome parameters are recurrence rates of sHPT, frequencies of reoperations due to refractory hypoparathyroidism or recurrent/persistent hyperparathyroidism, postoperative morbidity and mortality and quality of life. 50 patients per group will be randomized in order to obtain relevant frequencies of outcome parameters that will form the basis for a large scale confirmatory multicentred randomized controlled trial.</p> <p>Discussion</p> <p>sHPT is a disease with a high incidence in patients with chronic renal failure. Even a small difference in outcomes will be of clinical relevance. To assess sufficient data about the rate of recurrent sHPT after both methods, a multicentred, randomized controlled trial (MRCT) under standardized conditions is mandatory.</p> <p>Due to the existing uncertainties the calculated number of patients necessary in each treatment arm (n > 4000) makes it impossible to perform this study as a confirmatory trial. Therefore estimates of different outcomes are performed using a pilot MRCT comparing 50 versus 50 randomized patients in order to establish a hypothesis that can be tested thereafter.</p> <p>If TPTX proves to have a lower rate of recurrent sHPT, no relevant disadvantages and no higher morbidity than TPTX+AT, current surgical practice may be changed.</p> <p>Trial registration</p> <p>International Standard Randomized Controlled Trial Number Registration (ISRCTN86202793)</p

    Treatment of secondary hyperparathyroidism in haemodialysis patients: a randomised clinical trial comparing paricalcitol and alfacalcidol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Secondary hyperparathyroidism is a common feature in patients with chronic kidney disease. Its serious clinical consequences include renal osteodystrophy, calcific uremic arteriolopathy, and vascular calcifications that increase morbidity and mortality.</p> <p>Reduced synthesis of active vitamin D contributes to secondary hyperparathyroidism. Therefore, this condition is managed with activated vitamin D. However, hypercalcemia and hyperphosphatemia limit the use of activated vitamin D.</p> <p>In Denmark alfacalcidol is the primary choice of vitamin D analog.</p> <p>A new vitamin D analog, paricalcitol, may be less prone to induce hypercalcemia and hyperphosphatemia.</p> <p>However, a randomised controlled clinical study comparing alfacalcidol and paricalcitol has never been performed.</p> <p>The primary objective of this study is to compare alfacalcidol and paricalcitol. We evaluate the suppression of the secondary hyperparathyroidism and the tendency towards hyperphosphatemia and hypercalcemia.</p> <p>Methods/Design</p> <p>This is an investigator-initiated cross-over study. Nine Danish haemodialysis units will recruit 117 patients with end stage renal failure on maintenance haemodialysis therapy.</p> <p>Patients are randomised into two treatment arms. After a wash out period of 6 weeks they receive increasing doses of alfacalcidol or paricalcitol for a period of 16 weeks and after a further wash out period of 6 weeks they receive the contrary treatment (paricalcitol or alfacalcidol) for 16 weeks.</p> <p>Discussion</p> <p>Hyperparathyroidism, hypercalcemia and hyperphosphatemia are associated with increased cardiovascular mortality in patients with chronic kidney disease.</p> <p>If there is any difference in the ability of these two vitamin D analogs to decrease the secondary hyperparathyroidism without causing hypercalcemia and hyperphosphatemia, there may also be a difference in the risk of cardiovascular mortality depending on which vitamin D analog that are used. This has potential major importance for this group of patients.</p> <p>Trial registration</p> <p>ClinicalTrials.gov NCT004695</p

    Vitamin D Levels in Asymptomatic Adults-A Population Survey in Karachi, Pakistan

    Get PDF
    Background: It is well established that low levels of 25(OH) Vitamin D (/dL) are a common finding world over, affecting over a billion of the global population. Our primary objective was to determine the prevalence of vitamin D deficiency and insufficiency in the asymptomatic adult population of Karachi, Pakistan and the demographic, nutritional and co-morbidity characteristics associated with serum vitamin D levels. Methods: A cross-sectional population survey was conducted at two spaced out densely populated areas of the city. Serum levels of 25OH vitamin D were measured and GFR as renal function was assessed by using 4 variable MDRD formula. Results: Our sample of 300 had a median age of 48(interquartile range 38-55) years. The median level of serum vitamin D was 18.8 (IQ range 12.65-24.62) ng/dL. A total of 253 (84.3%) respondents had low levels (/dL) of 25OH vitamin D. Serum PTH and vitamin D were negatively correlated (r = -0.176, p = 0.001). The median PTH in the vitamin D sufficiency group was 38.4 (IQ range28.0-48.8)pg/mL compared with 44.4 (IQ range 34.3-56.8) pg/mL in the deficiency group (p = 0.011).The median serum calcium level in the sample was 9.46(IQ range 9.18-9.68) ng/dL. Low serum levels of vitamin D were not associated with hypertension (p = 0.771) or with an elevated spot blood pressure (p = 0.164).In our sample 75(26%) respondents had an eGFR corresponding to stage 2 and stage 3 CKD. There was no significant correlation between levels of vitamin D and eGFR (r = -0.127, p-value = 0.277). Respondents using daily vitamin D supplements had higher 25 OH vitamin D levels (p-value = 0.021). Conclusion: We observed a high proportion of the asymptomatic adult population having low levels of vitamin D and subclinical deterioration of eGFR. The specific cause(s) for this observed high prevalence of low 25OH vitamin D levels are not clear and need to be investigated further upon

    Do aluminium-based phosphate binders continue to have a role in contemporary nephrology practice?

    Get PDF
    Background: Aluminium-containing phosphate binders have long been used for treatment of hyperphosphatemia in dialysis patients. Their safety became controversial in the early 1980's after reports of aluminium related neurological and bone disease began to appear. Available historical evidence however, suggests that neurological toxicity may have primarily been caused by excessive exposure to aluminium in dialysis fluid, rather than aluminium-containing oral phosphate binders. Limited evidence suggests that aluminium bone disease may also be on the decline in the era of aluminium removal from dialysis fluid, even with continued use of aluminium binders

    Response of different PTH assays to therapy with sevelamer or CaCO3 and active vitamin D sterols

    Get PDF
    Amino-terminally truncated parathyroid hormone (PTH) fragments are detected to differing degrees by first- and second-generation immunometric PTH assays (PTH-IMAs), and acute changes in serum calcium affect the proportion of these fragments in circulation. However, the effect of chronic calcium changes and different vitamin D doses on these PTH measurements remains to be defined. In this study, 60 pediatric dialysis patients, aged 13.9 ± 0.7 years, with secondary hyperparathyroidism were randomized to 8 months of therapy with oral vitamin D combined with either calcium carbonate (CaCO3) or sevelamer. Serum phosphorus levels did not differ between groups. Serum calcium levels rose from 9.3 ± 0.1 to 9.7 ± 0.1 mg/dl during CaCO3 therapy (p < 0.01 from baseline) but remained unchanged during sevelamer therapy. In the CaCO3 and sevelamer groups, baseline serum PTH levels (1st PTH-IMA; Nichols Institute Diagnostics, San Clemente, CA) were 964 ± 75 and 932 ± 89 pg/ml, and levels declined to 491 ± 55 and 543 ± 59 pg/ml, respectively (nonsignificant between groups). Patients treated with sevelamer received higher doses of vitamin D than those treated with CaCO3. The PTH values obtained by first- and second-generation PTH-IMAs correlated closely throughout therapy and the response of PTH was similar to both PTH-IMAs, despite differences in serum calcium levels

    Prevention and treatment of renal osteodystrophy in children on chronic renal failure: European guidelines

    Get PDF
    Childhood renal osteodystrophy (ROD) is the consequence of disturbances of the calcium-regulating hormones vitamin D and parathyroid hormone (PTH) as well as of the somatotroph hormone axis associated with local modulation of bone and growth cartilage function. The resulting growth retardation and the potentially rapid onset of ROD in children are different from ROD in adults. The biochemical changes of ROD as well as its prevention and treatment affect calcium and phosphorus homeostasis and are directly associated with the development of cardiovascular disease in pediatric renal patients. The aims of the clinical and biochemical surveillance of pediatric patients with CRF or on dialysis are prevention of hyperphosphatemia, avoidance of hypercalcemia and keeping the calcium phosphorus product below 5 mmol(2)/l(2). The PTH levels should be within the normal range in chronic renal failure (CRF) and up to 2–3 times the upper limit of normal levels in dialysed children. Prevention of ROD is expected to result in improved growth and less vascular calcification
    corecore