135 research outputs found

    Virulence properties and random amplification of polymorphic DNA (RAPD) fingerprinting of Candida albicans isolates obtained from Monastir dental hospital, Tunisia

    Get PDF
    Genotypic and phenotypic characterization as well as studies on the virulence factors of Candida albicans isolates obtained from oral cavity of patients was carried out using random amplified polymorphic DNA (RAPD) fingerprinting and epithelial cells adherence assay, respectively. RAPD patterns revealed the presence of 13 C. albicans genotypes separated into two clusters at 75% ofsimilarity when they were combined. Results also showed the presence of haemolytic protease activity as virulence factors with 88% of the C. albicans strains been able to adhere to Caco-2 cells and only 64% to Hep-2. RAPD-polymerase chain reaction (PCR) is a molecular tool used to differentiate the isolates into various genotypes based on their virulence properties.Key words: Candida albicans, stomatitis, random amplified polymorphic DNA, Hep-2, Caco-2 cells

    Homogenization pressures applied to citrus juice manufacturing. Functional properties and application

    Full text link
    [EN] Homogenization is a unit operation that can be incorporated in citrus juice manufacturing to improve chemical and physical characteristics relevant for use in subsequent processing operations. The aim of this study was to evaluate the effect of different homogenization pressures on suspended solids and antiradical activity in mandarin low pulp juice (LPJ) and to understand their influence on a posterior vacuum impregnation operation. We found the pressure treatments applied to LPJ do not have negative effects on antiradical activity or functional compounds in the juice. In the vacuum impregnation study we found that more LPJ was introduced into the structural matrix of apples when homogenized at higher pressures and therefore more functional compounds may be introduced due to pulp stability and particle size reduction. © 2012 Elsevier Ltd. All rights reservedThe authors acknowledge the Ministerio de Ciencia e Innovacion of Spain for its contribution to projects AGL2009-09905, AGL2009-11805 and PET2008_0015.Betoret Valls, ME.; Sentandreu Vicente, E.; Betoret Valls, N.; Fito Maupoey, P. (2012). Homogenization pressures applied to citrus juice manufacturing. Functional properties and application. Journal of Food Engineering. 111(1):28-33. https://doi.org/10.1016/j.jfoodeng.2012.01.035S2833111

    CandidaDB: a genome database for Candida albicans pathogenomics

    Get PDF
    CandidaDB is a database dedicated to the genome of the most prevalent systemic fungal pathogen of humans, Candida albicans. CandidaDB is based on an annotation of the Stanford Genome Technology Center C.albicans genome sequence data by the European Galar Fungail Consortium. CandidaDB Release 2.0 (June 2004) contains information pertaining to Assembly 19 of the genome of C.albicans strain SC5314. The current release contains 6244 annotated entries corresponding to 130 tRNA genes and 5917 protein-coding genes. For these, it provides tentative functional assignments along with numerous pre-run analyses that can assist the researcher in the evaluation of gene function for the purpose of specific or large-scale analysis. CandidaDB is based on GenoList, a generic relational data schema and a World Wide Web interface that has been adapted to the handling of eukaryotic genomes. The interface allows users to browse easily through genome data and retrieve information. CandidaDB also provides more elaborate tools, such as pattern searching, that are tightly connected to the overall browsing system. As the C.albicans genome is diploid and still incompletely assembled, CandidaDB provides tools to browse the genome by individual supercontigs and to examine information about allelic sequences obtained from complementary contigs. CandidaDB is accessible at http://genolist.pasteur.fr/CandidaDB

    Rapid detection of peptide markers for authentication purposes in raw and cooked meat using ambient liquid extraction surface analysis mass spectrometry

    Get PDF
    In this paper, our previously developed ambient LESA-MS methodology is implemented to analyze five types of thermally treated meat species, namely beef, pork, horse, chicken, and turkey meat, in order to select and identify heat-stable and species-specific peptide markers. In-solution tryptic digests of cooked meats were deposited onto a polymer surface, followed by LESA-MS analysis and evaluation using multivariate data analysis and tandem electrospray MS. The five types of cooked meat were clearly discriminated using principal component analysis and orthogonal partial least squares discriminant analysis. A number of 23 heat stable peptide markers unique to species and muscle protein were identified following data-dependent tandem LESA-MS analysis. Surface extraction and direct ambient MS analysis of mixtures of cooked meat species was performed for the first time and enabled detection of 10% (w/w) of pork, horse, and turkey meat, and 5% (w/w) of chicken meat in beef, using the developed LESA-MS/MS analysis. The study shows, for the first time, that ambient LESA-MS methodology displays specificity sufficient to be implemented effectively for the analysis of processed and complex peptide digests. The proposed approach is much faster and simpler than other measurement tools for meat speciation; it has potential for application in other areas of meat science or food production

    Recombination in West Nile Virus: minimal contribution to genomic diversity

    Get PDF
    Recombination is known to play a role in the ability of various viruses to acquire sequence diversity. We consequently examined all available West Nile virus (WNV) whole genome sequences both phylogenetically and with a variety of computational recombination detection algorithms. We found that the number of distinct lineages present on a phylogenetic tree reconstruction to be identical to the 6 previously reported. Statistically-significant evidence for recombination was only observed in one whole genome sequence. This recombination event was within the NS5 polymerase coding region. All three viruses contributing to the recombination event were originally isolated in Africa at various times, with the major parent (SPU116_89_B), minor parent (KN3829), and recombinant sequence (AnMg798) belonging to WNV taxonomic lineages 2, 1a, and 2 respectively. This one isolated recombinant genome was out of a total of 154 sequences analyzed. It therefore does not seem likely that recombination contributes in any significant manner to the overall sequence variation within the WNV genome

    Candida albicans Scavenges Host Zinc via Pra1 during Endothelial Invasion

    Get PDF
    The ability of pathogenic microorganisms to assimilate essential nutrients from their hosts is critical for pathogenesis. Here we report endothelial zinc sequestration by the major human fungal pathogen, Candida albicans. We hypothesised that, analogous to siderophore-mediated iron acquisition, C. albicans utilises an extracellular zinc scavenger for acquiring this essential metal. We postulated that such a “zincophore” system would consist of a secreted factor with zinc-binding properties, which can specifically reassociate with the fungal cell surface. In silico analysis of the C. albicans secretome for proteins with zinc binding motifs identified the pH-regulated antigen 1 (Pra1). Three-dimensional modelling of Pra1 indicated the presence of at least two zinc coordination sites. Indeed, recombinantly expressed Pra1 exhibited zinc binding properties in vitro. Deletion of PRA1 in C. albicans prevented fungal sequestration and utilisation of host zinc, and specifically blocked host cell damage in the absence of exogenous zinc. Phylogenetic analysis revealed that PRA1 arose in an ancient fungal lineage and developed synteny with ZRT1 (encoding a zinc transporter) before divergence of the Ascomycota and Basidiomycota. Structural modelling indicated physical interaction between Pra1 and Zrt1 and we confirmed this experimentally by demonstrating that Zrt1 was essential for binding of soluble Pra1 to the cell surface of C. albicans. Therefore, we have identified a novel metal acquisition system consisting of a secreted zinc scavenger (“zincophore”), which reassociates with the fungal cell. Furthermore, functional similarities with phylogenetically unrelated prokaryotic systems indicate that syntenic zinc acquisition loci have been independently selected during evolution

    Comparison of Muscle Transcriptome between Pigs with Divergent Meat Quality Phenotypes Identifies Genes Related to Muscle Metabolism and Structure

    Get PDF
    Background: Meat quality depends on physiological processes taking place in muscle tissue, which could involve a large pattern of genes associated with both muscle structural and metabolic features. Understanding the biological phenomena underlying muscle phenotype at slaughter is necessary to uncover meat quality development. Therefore, a muscle transcriptome analysis was undertaken to compare gene expression profiles between two highly contrasted pig breeds, Large White (LW) and Basque (B), reared in two different housing systems themselves influencing meat quality. LW is the most predominant breed used in pig industry, which exhibits standard meat quality attributes. B is an indigenous breed with low lean meat and high fat contents, high meat quality characteristics, and is genetically distant from other European pig breeds. Methodology/Principal Findings: Transcriptome analysis undertaken using a custom 15 K microarray, highlighted 1233 genes differentially expressed between breeds (multiple-test adjusted P-value,0.05), out of which 635 were highly expressed in the B and 598 highly expressed in the LW pigs. No difference in gene expression was found between housing systems. Besides, expression level of 12 differentially expressed genes quantified by real-time RT-PCR validated microarray data. Functional annotation clustering emphasized four main clusters associated to transcriptome breed differences: metabolic processes, skeletal muscle structure and organization, extracellular matrix, lysosome, and proteolysis, thereb

    The Evolutionary Dynamics of a Rapidly Mutating Virus within and between Hosts: The Case of Hepatitis C Virus

    Get PDF
    Many pathogens associated with chronic infections evolve so rapidly that strains found late in an infection have little in common with the initial strain. This raises questions at different levels of analysis because rapid within-host evolution affects the course of an infection, but it can also affect the possibility for natural selection to act at the between-host level. We present a nested approach that incorporates within-host evolutionary dynamics of a rapidly mutating virus (hepatitis C virus) targeted by a cellular cross-reactive immune response, into an epidemiological perspective. The viral trait we follow is the replication rate of the strain initiating the infection. We find that, even for rapidly evolving viruses, the replication rate of the initial strain has a strong effect on the fitness of an infection. Moreover, infections caused by slowly replicating viruses have the highest infection fitness (i.e., lead to more secondary infections), but strains with higher replication rates tend to dominate within a host in the long-term. We also study the effect of cross-reactive immunity and viral mutation rate on infection life history traits. For instance, because of the stochastic nature of our approach, we can identify factors affecting the outcome of the infection (acute or chronic infections). Finally, we show that anti-viral treatments modify the value of the optimal initial replication rate and that the timing of the treatment administration can have public health consequences due to within-host evolution. Our results support the idea that natural selection can act on the replication rate of rapidly evolving viruses at the between-host level. It also provides a mechanistic description of within-host constraints, such as cross-reactive immunity, and shows how these constraints affect the infection fitness. This model raises questions that can be tested experimentally and underlines the necessity to consider the evolution of quantitative traits to understand the outcome and the fitness of an infection

    Emergence and phylodynamics of Citrus tristeza virus in Sicily, Italy

    Get PDF
    [EN] Citrus tristeza virus (CTV) outbreaks were detected in Sicily island, Italy for the first time in 2002. To gain insight into the evolutionary forces driving the emergence and phylogeography of these CTV populations, we determined and analyzed the nucleotide sequences of the p20 gene from 108 CTV isolates collected from 2002 to 2009. Bayesian phylogenetic analysis revealed that mild and severe CTV isolates belonging to five different clades (lineages) were introduced in Sicily in 2002. Phylogeographic analysis showed that four lineages co-circulated in the main citrus growing area located in Eastern Sicily. However, only one lineage (composed of mild isolates) spread to distant areas of Sicily and was detected after 2007. No correlation was found between genetic variation and citrus host, indicating that citrus cultivars did not exert differential selective pressures on the virus. The genetic variation of CTV was not structured according to geographical location or sampling time, likely due to the multiple introduction events and a complex migration pattern with intense co- and recirculation of different lineages in the same area. The phylogenetic structure, statistical tests of neutrality and comparison of synonymous and nonsynonymous substitution rates suggest that weak negative selection and genetic drift following a rapid expansion may be the main causes of the CTV variability observed today in Sicily. Nonetheless, three adjacent amino acids at the p20 N-terminal region were found to be under positive selection, likely resulting from adaptation events.A.W. and S.F.E. were supported by grant BFU2012-30805 from the Spanish Secretaria de Estado de Investigacion, Desarrollo e Innovacion and by a grant 22371 from the John Templeton Foundation. The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the John Templeton Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Davino, S.; Willemsen, A.; Panno. Stefano; Davino, M.; Catara, A.; Elena Fito, SF.; Rubio, L. (2013). Emergence and phylodynamics of Citrus tristeza virus in Sicily, Italy. PLoS ONE. 8:66700-66700. doi:10.1371/journal.pone.0066700S66700667008Domingo, E., & Holland, J. J. (1997). RNA VIRUS MUTATIONS AND FITNESS FOR SURVIVAL. Annual Review of Microbiology, 51(1), 151-178. doi:10.1146/annurev.micro.51.1.151Grenfell, B. T. (2004). Unifying the Epidemiological and Evolutionary Dynamics of Pathogens. Science, 303(5656), 327-332. doi:10.1126/science.1090727Moya, A., Holmes, E. C., & González-Candelas, F. (2004). The population genetics and evolutionary epidemiology of RNA viruses. Nature Reviews Microbiology, 2(4), 279-288. doi:10.1038/nrmicro863Gray, R. R., Tatem, A. J., Lamers, S., Hou, W., Laeyendecker, O., Serwadda, D., … Salemi, M. (2009). Spatial phylodynamics of HIV-1 epidemic emergence in east Africa. AIDS, 23(14), F9-F17. doi:10.1097/qad.0b013e32832faf61Holmes, E. C. (2008). Evolutionary History and Phylogeography of Human Viruses. Annual Review of Microbiology, 62(1), 307-328. doi:10.1146/annurev.micro.62.081307.162912Pybus, O. G., Suchard, M. A., Lemey, P., Bernardin, F. J., Rambaut, A., Crawford, F. W., … Delwart, E. L. (2012). Unifying the spatial epidemiology and molecular evolution of emerging epidemics. Proceedings of the National Academy of Sciences, 109(37), 15066-15071. doi:10.1073/pnas.1206598109Talbi, C., Lemey, P., Suchard, M. A., Abdelatif, E., Elharrak, M., Jalal, N., … Bourhy, H. (2010). Phylodynamics and Human-Mediated Dispersal of a Zoonotic Virus. PLoS Pathogens, 6(10), e1001166. doi:10.1371/journal.ppat.1001166Vijaykrishna, D., Bahl, J., Riley, S., Duan, L., Zhang, J. X., Chen, H., … Guan, Y. (2008). Evolutionary Dynamics and Emergence of Panzootic H5N1 Influenza Viruses. PLoS Pathogens, 4(9), e1000161. doi:10.1371/journal.ppat.1000161Gómez, P., Sempere, R. N., Aranda, M. A., & Elena, S. F. (2012). Phylodynamics of Pepino mosaic virus in Spain. European Journal of Plant Pathology, 134(3), 445-449. doi:10.1007/s10658-012-0019-0Lefeuvre, P., Martin, D. P., Harkins, G., Lemey, P., Gray, A. J. A., Meredith, S., … Heydarnejad, J. (2010). The Spread of Tomato Yellow Leaf Curl Virus from the Middle East to the World. PLoS Pathogens, 6(10), e1001164. doi:10.1371/journal.ppat.1001164TOMITAKA, Y., & OHSHIMA, K. (2006). A phylogeographical study of the Turnip mosaic virus population in East Asia reveals an ‘emergent’ lineage in Japan. Molecular Ecology, 15(14), 4437-4457. doi:10.1111/j.1365-294x.2006.03094.xWu, B., Blanchard-Letort, A., Liu, Y., Zhou, G., Wang, X., & Elena, S. F. (2011). Dynamics of Molecular Evolution and Phylogeography of Barley yellow dwarf virus-PAV. PLoS ONE, 6(2), e16896. doi:10.1371/journal.pone.0016896MORENO, P., AMBRÓS, S., ALBIACH-MARTÍ, M. R., GUERRI, J., & PEÑA, L. (2008). Citrus tristeza virus: a pathogen that changed the course of the citrus industry. Molecular Plant Pathology, 9(2), 251-268. doi:10.1111/j.1364-3703.2007.00455.xTatineni, S., Robertson, C. J., Garnsey, S. M., & Dawson, W. O. (2011). A plant virus evolved by acquiring multiple nonconserved genes to extend its host range. Proceedings of the National Academy of Sciences, 108(42), 17366-17371. doi:10.1073/pnas.1113227108Folimonova, S. Y. (2012). Superinfection Exclusion Is an Active Virus-Controlled Function That Requires a Specific Viral Protein. Journal of Virology, 86(10), 5554-5561. doi:10.1128/jvi.00310-12Bar-Joseph, M., Marcus, R., & Lee, R. F. (1989). The Continuous Challenge of Citrus Tristeza Virus Control. Annual Review of Phytopathology, 27(1), 291-316. doi:10.1146/annurev.py.27.090189.001451Davino, S., Rubio, L., & Davino, M. (2005). Molecular analysis suggests that recent Citrus tristeza virus outbreaks in Italy were originated by at least two independent introductions. European Journal of Plant Pathology, 111(3), 289-293. doi:10.1007/s10658-003-2815-zAlbiach-Marti, M. R., Mawassi, M., Gowda, S., Satyanarayana, T., Hilf, M. E., Shanker, S., … Dawson, W. O. (2000). Sequences of Citrus Tristeza Virus Separated in Time and Space Are Essentially Identical. Journal of Virology, 74(15), 6856-6865. doi:10.1128/jvi.74.15.6856-6865.2000Rubio, L., Ayllon, M. A., Kong, P., Fernandez, A., Polek, M., Guerri, J., … Falk, B. W. (2001). Genetic Variation of Citrus Tristeza Virus Isolates from California and Spain: Evidence for Mixed Infections and Recombination. Journal of Virology, 75(17), 8054-8062. doi:10.1128/jvi.75.17.8054-8062.2001Silva, G., Marques, N., & Nolasco, G. (2011). The evolutionary rate of citrus tristeza virus ranks among the rates of the slowest RNA viruses. Journal of General Virology, 93(2), 419-429. doi:10.1099/vir.0.036574-0Mawassi, M., Mietkiewska, E., Gofman, R., Yang, G., & Bar-Joseph, M. (1996). Unusual Sequence Relationships Between Two Isolates of Citrus Tristeza Virus. Journal of General Virology, 77(9), 2359-2364. doi:10.1099/0022-1317-77-9-2359Vives, M. C., Dawson, W. O., Flores, R., L√≥pez, C., Albiach-Mart√≠, M. R., Rubio, L., … Moreno, P. (1999). The complete genome sequence of the major component of a mild citrus tristeza virus isolate. Journal of General Virology, 80(3), 811-816. doi:10.1099/0022-1317-80-3-811Martín, S., Elena, S. F., Guerri, J., Moreno, P., Sambade, A., Rubio, L., … Vives, M. C. (2009). Contribution of recombination and selection to molecular evolution of Citrus tristeza virus. Journal of General Virology, 90(6), 1527-1538. doi:10.1099/vir.0.008193-0Vives, M. C., Rubio, L., Sambade, A., Mirkov, T. E., Moreno, P., & Guerri, J. (2005). Evidence of multiple recombination events between two RNA sequence variants within a Citrus tristeza virus isolate. Virology, 331(2), 232-237. doi:10.1016/j.virol.2004.10.037D’Urso, F., Sambade, A., Moya, A., Guerri, J., & Moreno, P. (2003). Variation of haplotype distributions of two genomic regions of Citrus tristeza virus populations from eastern Spain. Molecular Ecology, 12(2), 517-526. doi:10.1046/j.1365-294x.2000.01747.xSambade, A., Rubio, L., Garnsey, S. M., Costa, N., Muller, G. W., Peyrou, M., … Moreno, P. (2002). Comparison of viral RNA populations of pathogenically distinct isolates of Citrus tristeza virus : application to monitoring cross-protection. Plant Pathology, 51(3), 257-265. doi:10.1046/j.1365-3059.2002.00720.xReed, J. C., Kasschau, K. D., Prokhnevsky, A. I., Gopinath, K., Pogue, G. P., Carrington, J. C., & Dolja, V. V. (2003). Suppressor of RNA silencing encoded by Beet yellows virus. Virology, 306(2), 203-209. doi:10.1016/s0042-6822(02)00051-xFolimonova, S. Y., Robertson, C. J., Shilts, T., Folimonov, A. S., Hilf, M. E., Garnsey, S. M., & Dawson, W. O. (2009). Infection with Strains of Citrus Tristeza Virus Does Not Exclude Superinfection by Other Strains of the Virus. Journal of Virology, 84(3), 1314-1325. doi:10.1128/jvi.02075-09Kong, P., Rubio, L., Polek, M., & Falk, B. W. (2000). Virus Genes, 21(3), 139-145. doi:10.1023/a:1008198311398Powell, C. A., Pelosi, R. R., Rundell, P. A., & Cohen, M. (2003). Breakdown of Cross-Protection of Grapefruit from Decline-Inducing Isolates of Citrus tristeza virus Following Introduction of the Brown Citrus Aphid. Plant Disease, 87(9), 1116-1118. doi:10.1094/pdis.2003.87.9.1116Roistacher C, Dodds J. (1993) Failure of 100 mild Citrus tristeza virus isolates from california to cross protect against a challenge by severe sweet orange stem pitting isolates. Proc 12th Conf IOCV: 100–107.Ayllón, M. A., Rubio, L., Sentandreu, V., Moya, A., Guerri, J., & Moreno, P. (2006). Variations in Two Gene Sequences of Citrus Tristeza Virus after Host Passage. Virus Genes, 32(2), 119-128. doi:10.1007/s11262-005-6866-4Ayllón, M. A., Rubio, L., Moya, A., Guerri, J., & Moreno, P. (1999). The Haplotype Distribution of Two Genes of Citrus Tristeza Virus Is Altered after Host Change or Aphid Transmission. Virology, 255(1), 32-39. doi:10.1006/viro.1998.9566Sentandreu, V., Castro, J. A., Ayllón, M. A., Rubio, L., Guerri, J., González-Candelas, F., … Moya, A. (2005). Evolutionary analysis of genetic variation observed in citrus tristeza virus (CTV) after host passage. Archives of Virology, 151(5), 875-894. doi:10.1007/s00705-005-0683-xMatos, L. A., Hilf, M. E., Cayetano, X. A., Feliz, A. O., Harper, S. J., & Folimonova, S. Y. (2013). Dramatic Change in Citrus tristeza virus Populations in the Dominican Republic. Plant Disease, 97(3), 339-345. doi:10.1094/pdis-05-12-0421-reDavino, S., Davino, M., Sambade, A., Guardo, M., & Caruso, A. (2003). The First Citrus tristeza virus Outbreak Found in a Relevant Citrus Producing Area of Sicily, Italy. Plant Disease, 87(3), 314-314. doi:10.1094/pdis.2003.87.3.314aRUBIO, L., AYLLONl, M. A., GUERRI, J., PAPPU, H., NIBLETT, C., & MORENO, P. (1996). Differentiation of citrus tristeza closterovirus (CTV) isolates by single-strand conformation polymorphism analysis of the coat protein gene. Annals of Applied Biology, 129(3), 479-489. doi:10.1111/j.1744-7348.1996.tb05770.xLarkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., … Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947-2948. doi:10.1093/bioinformatics/btm404Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution, 28(10), 2731-2739. doi:10.1093/molbev/msr121Kosakovsky Pond, S. L., Posada, D., Gravenor, M. B., Woelk, C. H., & Frost, S. D. W. (2006). GARD: a genetic algorithm for recombination detection. Bioinformatics, 22(24), 3096-3098. doi:10.1093/bioinformatics/btl474Martin, D. P., Lemey, P., Lott, M., Moulton, V., Posada, D., & Lefeuvre, P. (2010). RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics, 26(19), 2462-2463. doi:10.1093/bioinformatics/btq467Librado, P., & Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11), 1451-1452. doi:10.1093/bioinformatics/btp187Kimura M. (1985) The neutral theory of molecular evolution. Cambridge Univ Pr.Weir, B. S., & Cockerham, C. C. (1984). Estimating F-Statistics for the Analysis of Population Structure. Evolution, 38(6), 1358. doi:10.2307/2408641Pond, S. L. K., & Frost, S. D. W. (2005). Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics, 21(10), 2531-2533. doi:10.1093/bioinformatics/bti320Drummond, A. J., & Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7(1), 214. doi:10.1186/1471-2148-7-214Bielejec, F., Rambaut, A., Suchard, M. A., & Lemey, P. (2011). SPREAD: spatial phylogenetic reconstruction of evolutionary dynamics. Bioinformatics, 27(20), 2910-2912. doi:10.1093/bioinformatics/btr481Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22(21), 2688-2690. doi:10.1093/bioinformatics/btl446Ott M, Zola J, Stamatakis A, Aluru S. (2007) Large-scale maximum likelihood-based phylogenetic analysis on the IBM BlueGene/L. Proceedings of the 19th ACM/IEEE conference on Supercomputing. Article No. 4.Shimodaira, H., & Hasegawa, M. (1999). Multiple Comparisons of Log-Likelihoods with Applications to Phylogenetic Inference. Molecular Biology and Evolution, 16(8), 1114-1116. doi:10.1093/oxfordjournals.molbev.a026201Soria-Carrasco, V., Talavera, G., Igea, J., & Castresana, J. (2007). The K tree score: quantification of differences in the relative branch length and topology of phylogenetic trees. Bioinformatics, 23(21), 2954-2956. doi:10.1093/bioinformatics/btm466Puigbo, P., Garcia-Vallve, S., & McInerney, J. O. (2007). TOPD/FMTS: a new software to compare phylogenetic trees. Bioinformatics, 23(12), 1556-1558. doi:10.1093/bioinformatics/btm13
    corecore