2,107 research outputs found
The role of microbes in rumen lipolysis and biohydrogenation and their manipulation
Despite the fact that the ruminant diet is rich in polyunsaturated fatty acids (PUFA), ruminant products - meat, milk and dairy - contain mainly saturated fatty acids (SFA) because of bacterial lipolysis and subsequent biohydrogenation of ingested PUFA in the rumen. The link between SFA consumption by man and coronary heart disease is well established. In contrast, ruminant products also contain fatty acids that are known to be beneficial to human health, namely conjugated linoleic acids (CLAs). The aims of research in this field have been to understand the microbial ecology of lipolysis and biohydrogenation and to find ways of manipulating ruminal microbes to increase the flow of PUFA and CLA from the rumen into meat and milk. This review describes our present understanding of the microbial ecology of ruminal lipid metabolism, including some apparently anomalous and paradoxical observations, and the status of how the metabolism may be manipulated and the possible consequential effects on other aspects of ruminal digestion. Intuitively, it may appear that inhibiting the ruminal lipase would cause more dietary PUFA to reach the mammary gland. However, lipolysis releases the non-esterified fatty acids that form the substrates for biohydrogenation, but which can, if they accumulate, inhibit the whole process. Thus, increasing lipase activity could be beneficial if the increased release of non-esterified PUFA inhibited the metabolism of CLA. Rumen ciliate protozoa do not carry out biohydrogenation, yet protozoal lipids are much more highly enriched in CLA than bacterial lipids. How could this happen if protozoa do not metabolise PUFA? The answer seems to lie in the ingestion of plant organelles, particularly chloroplasts, and the partial metabolism of the fatty acids by contaminating bacteria. Bacteria related to Butyrivibrio fibrisolvens are by far the most active and numerous biohydrogenating bacteria isolated from the rumen. But do we misunderstand the role of different bacterial species in biohydrogenation because there are uncultivated species that we need to understand and include in the analysis? Manipulation methods include dietary vegetable and fish oils and plant-derived chemicals. Their usefulness, efficacy and possible effects on fatty acid metabolism and on ruminal microorganisms and other areas of their metabolism are described, and areas of opportunity identified
Not all saponins have a greater antiprotozoal activity than their related sapogenins
The antiprotozoal effect of saponins varies according to both the structure of the sapogenin and the composition and linkage of the sugar moieties to the sapogenin. The effect of saponins on protozoa has been considered to be transient as it was thought that when saponins were deglycosilated to sapogenins in the rumen they became inactive; however, no studies have yet evaluated the antiprotozoal effect of sapogenins compared to their related saponins. The aims of this study were to evaluate the antiprotozoal effect of eighteen commercially available triterpenoid and steroid saponins and sapogenins in vitro, to investigate the effect of variations in the sugar moiety of related saponins and to compare different sapogenins bearing identical sugar moieties. Our results show that antiprotozoal activity is not an inherent feature of all saponins and that small variations in the structure of a compound can have a significant influence on their biological activity. Some sapogenins (20(S)-protopanaxatriol, asiatic acid and madecassic acid) inhibited protozoa activity to a greater extent than their corresponding saponins (Re and Rh1 and asiaticoside and madecassoside), thus the original hypothesis that the transient nature of the antiprotozoal action of saponins is due to the deglycosilation of saponins needs to be revisited.This work was supported by the Innovate UK project ‘Ivy for ruminants’ Ref:101091. CJN thanks the Biotechnology and Biological Sciences Research Council, UK via grant number BB/J0013/1, for financial support
¿Puede considerarse diferente la calidad de la proteína y grasa de la leche de Cabra y vaca?
Peer reviewe
Optimizacion del diseino de una red de distribucion de agua potable
En el presente reporte se present an los resultados obtenidos por el grupo de trabajo que estudio el problema de disenar de manera optima, una red de distribucion de agua potable. Esencialmente se discuten dos clases de estrategias. En primer lugar, aquellas cuya finalidad es reducir significativamente los recursos computacionales requeridos por los algoritmos im- plementados por el IMTA. Estos algoritmos son de caracter heuristico y generan una solucion factible que no es optima. En ciertos casos se sabe que las soluciones obtenidas por dichos algoritmos estan relativamente lejos del optima y no son aceptables desde el punto de vista del disenador. La segunda clase de estrategias propuestas, esta destinada precisamente a aliviar este problema. Se sugieren tecnicas originadas en optimizacion continua yen flujo en redes
Improving the antiprotozoal effect of saponins in the rumen by combination with glycosidase inhibiting inimosugars or by modification of their chemical structure
The antiprotozoal effect of saponins is transitory, as when saponins are deglycosylated to sapogenins by rumen microorganisms they become inactive. We hypothesised that the combination of saponins with glycosidase-inhibiting iminosugars might potentially increase the effectiveness of saponins over time by preventing their deglycosylation in the rumen. Alternatively, modifying the structure of the saponins by substituting the sugar moiety with other small polar residues might maintain their activity as the sugar substitute would not be enzymatically cleaved. The aim of this in vitro study was to evaluate the acute antiprotozoal effect and the stability of this effect over a 24 h incubation period using ivy saponins, a stevia extract rich in iminosugars, ivy saponins with stevia extract, and a chemically modified ivy saponin, hederagenin bis-succinate (HBS). The effects on fermentation parameters and rumen bacterial communities were also studied. Ivy saponins with stevia and HBS had a greater antiprotozoal effect than ivy saponins, and this effect was maintained after 24 h of incubation (P<0.001). The combination of ivy and stevia extracts was more effective in shifting the fermentation pattern towards higher propionate (+39%) and lower butyrate (-32%) and lower ammonia concentration (-64%) than the extracts incubated separately. HBS caused a decrease in butyrate (-45%) and an increase in propionate (+43%) molar proportions. However, the decrease in ammonia concentration (-42%) observed in the presence of HBS was less than that caused by ivy saponins, either alone or with stevia. Whereas HBS and stevia impacted on bacterial population in terms of community structure, only HBS had an effect in terms of biodiversity (P<0.05). It was concluded that ivy saponins with stevia and the modified saponin HBS had a strong antiprotozoal effect, although they differed in their effects on fermentation parameters and bacteria communities. Ivy saponins combined with an iminosugar-rich stevia extract and/or HBS should be evaluated to determine their antiprotozoal effect in vivopublishersversionPeer reviewe
- …