134 research outputs found
Nonclassical Moments and their Measurement
Practically applicable criteria for the nonclassicality of quantum states are
formulated in terms of different types of moments. For this purpose the moments
of the creation and annihilation operators, of two quadratures, and of a
quadrature and the photon number operator turn out to be useful. It is shown
that all the required moments can be determined by homodyne correlation
measurements. An example of a nonclassical effect that is easily characterized
by our methods is amplitude-squared squeezing.Comment: 12 pages, 6 figure
Electron-boson glue function derived from electronic Raman scattering
Raman scattering cross sections depend on photon polarization. In the
cuprates nodal and antinodal directions are weighted more strongly in
and symmetry, respectively. On the other hand in angle-resolved
photoemission spectroscopy (ARPES), electronic properties are measured along
well-defined directions in momentum space rather than their weighted averages.
In contrast, the optical conductivity involves a momentum average over the
entire Brillouin zone. Newly measured Raman response data on high-quality
BiSrCaCuO single crystals up to high energies have
been inverted using a modified maximum entropy inversion technique to extract
from and Raman data corresponding electron-boson spectral
densities (glue) are compared to the results obtained with known ARPES and
optical inversions. We find that the spectrum agrees qualitatively
with nodal direction ARPES while the looks more like the optical
spectrum. A large peak around meV in , much less prominent
in , is taken as support for the importance of scattering
at this frequency.Comment: 7 pages, 3 figure
Uncertainty Relations in Deformation Quantization
Robertson and Hadamard-Robertson theorems on non-negative definite hermitian
forms are generalized to an arbitrary ordered field. These results are then
applied to the case of formal power series fields, and the
Heisenberg-Robertson, Robertson-Schr\"odinger and trace uncertainty relations
in deformation quantization are found. Some conditions under which the
uncertainty relations are minimized are also given.Comment: 28+1 pages, harvmac file, no figures, typos correcte
Les Houches 2013: Physics at TeV Colliders: Standard Model Working Group Report
This Report summarizes the proceedings of the 2013 Les Houches workshop on
Physics at TeV Colliders. Session 1 dealt primarily with (1) the techniques for
calculating standard model multi-leg NLO and NNLO QCD and NLO EW cross sections
and (2) the comparison of those cross sections with LHC data from Run 1, and
projections for future measurements in Run 2.Comment: Proceedings of the Standard Model Working Group of the 2013 Les
Houches Workshop, Physics at TeV Colliders, Les houches 3-21 June 2013. 200
page
Quantitative comparison of single- and two-particle properties in the cuprates
We explore the strong variations of the electronic properties of
copper-oxygen compounds across the doping phase diagram in a quantitative way.
To this end we calculate the electronic Raman response on the basis of results
from angle-resolved photoemission spectroscopy (ARPES). In the limits of our
approximations we find agreement on the overdoped side and pronounced
discrepancies at lower doping. In contrast to the successful approach for the
transport properties at low energies, the Raman and the ARPES data cannot be
reconciled by adding angle-dependent momentum scattering. We discuss possible
routes towards an explanation of the suppression of spectral weight close to
the points which sets in abruptly close to 21% doping.Comment: 7 pages, 4 figure
Les Houches 2015: Physics at TeV Colliders Standard Model Working Group Report
This Report summarizes the proceedings of the 2015 Les Houches workshop on
Physics at TeV Colliders. Session 1 dealt with (I) new developments relevant
for high precision Standard Model calculations, (II) the new PDF4LHC parton
distributions, (III) issues in the theoretical description of the production of
Standard Model Higgs bosons and how to relate experimental measurements, (IV) a
host of phenomenological studies essential for comparing LHC data from Run I
with theoretical predictions and projections for future measurements in Run II,
and (V) new developments in Monte Carlo event generators.Comment: Proceedings of the Standard Model Working Group of the 2015 Les
Houches Workshop, Physics at TeV Colliders, Les Houches 1-19 June 2015. 227
page
Gap structure in the electron-doped Iron-Arsenide Superconductor Ba(Fe0.92Co0.08)2As2: low-temperature specific heat study
We report the field and temperature dependence of the low-temperature
specific heat down to 400 mK and in magnetic fields up to 9 T of the
electron-doped Ba(Fe0.92Co0.08)2As2 superconductor. Using the phonon specific
heat obtained from pure BaFe2As2 we find the normal state Sommerfeld
coefficient to be 18 mJ/mol.K^2 and a condensation energy of 1.27 J/mol. The
temperature dependence of the electronic specific heat clearly indicate the
presence of the low-energy excitations in the system. The magnetic field
variation of field-induced specific heat cannot be described by single clean s-
or d-wave models. Rather, the data require an anisotropic gap scenario which
may or may not have nodes. We discuss the implications of these results.Comment: New Journal of Physics in press, 10 pages, 5 figure
Precision studies of observables in pp → W → lνl and pp → γ , Z → l+l− processes at the LHC
This report was prepared in the context of the LPCC Electroweak Precision Measurements at the LHC WG (https://lpcc.web.cern.ch/lpcc/index.php?page=electroweak_wg) and summarizes the activity of a subgroup dedicated to the systematic comparison of public Monte Carlo codes, which describe the Drell–Yan processes at hadron colliders, in particular at the CERN Large Hadron Collider (LHC). This work represents an important step towards the definition of an accurate simulation framework necessary for very high-precision measurements of electroweak (EW) observables such as the W boson mass and the weak mixing angle. All the codes considered in this report share at least next-to-leading-order (NLO) accuracy in the prediction of the total cross sections in an expansion either in the strong or in the EW coupling constant. The NLO fixed-order predictions have been scrutinized at the technical level, using exactly the same inputs, setup and perturbative accuracy, in order to quantify the level of agreement of different implementations of the same calculation. A dedicated comparison, again at the technical level, of three codes that reach next-to-next-to-leading-order (NNLO) accuracy in quantum chromodynamics (QCD) for the total cross section has also been performed. These fixed-order results are a well-defined reference that allows a classification of the impact of higher-order sets of radiative corrections. Several examples of higher-order effects due to the strong or the EW interaction are discussed in this common framework. Also the combination of QCD and EW corrections is discussed, together with the ambiguities that affect the final result, due to the choice of a specific combination recipe. All the codes considered in this report have been run by the respective authors, and the results presented here constitute a benchmark that should be always checked/reproduced before any high-precision analysis is conducted based on these codes. In order to simplify these benchmarking procedures, the codes used in this report, together with the relevant input files and running instructions, can be found in a repository at https://twiki.cern.ch/twiki/bin/view/Main/DrellYanComparison
Drosophila histone locus bodies form by hierarchical recruitment of components
An assembly process involving sequential recruitment of components and hierarchical dependency drives formation of the nuclear structures known as histone locus bodies
Buffering and the evolution of chromosome-wide gene regulation
Copy number variation (CNV) in terms of aneuploidies of both entire chromosomes and chromosomal segments is an important evolutionary driving force, but it is inevitably accompanied by potentially problematic variations in gene doses and genomic instability. Thus, a delicate balance must be maintained between mechanisms that compensate for variations in gene doses (and thus allow such genomic variability) and selection against destabilizing CNVs. In Drosophila, three known compensatory mechanisms have evolved: a general segmental aneuploidy-buffering system and two chromosome-specific systems. The two chromosome-specific systems are the male-specific lethal complex, which is important for dosage compensation of the male X chromosome, and Painting of fourth, which stimulates expression of the fourth chromosome. In this review, we discuss the origin and function of buffering and compensation using Drosophila as a model
- …