82 research outputs found

    Cell cycle-specific UNG2 phosphorylations regulate protein turnover, activity and association with RPA

    Get PDF
    Human UNG2 is a multifunctional glycosylase that removes uracil near replication forks and in non-replicating DNA, and is important for affinity maturation of antibodies in B cells. How these diverse functions are regulated remains obscure. Here, we report three new phosphoforms of the non-catalytic domain that confer distinct functional properties to UNG2. These are apparently generated by cyclin-dependent kinases through stepwise phosphorylation of S23, T60 and S64 in the cell cycle. Phosphorylation of S23 in late G1/early S confers increased association with replication protein A (RPA) and replicating chromatin and markedly increases the catalytic turnover of UNG2. Conversely, progressive phosphorylation of T60 and S64 throughout S phase mediates reduced binding to RPA and flag UNG2 for breakdown in G2 by forming a cyclin E/c-myc-like phosphodegron. The enhanced catalytic turnover of UNG2 p-S23 likely optimises the protein to excise uracil along with rapidly moving replication forks. Our findings may aid further studies of how UNG2 initiates mutagenic rather than repair processing of activation-induced deaminase-generated uracil at Ig loci in B cells

    Validation of reference genes for quantitative RT-qPCR studies of gene expression in Atlantic cod (Gadus morhua l.) during temperature stress

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One important physiological response to environmental stress in animals is change in gene expression. To obtain reliable data from gene expression studies using RT-qPCR it is important to evaluate a set of possible reference genes as normalizers for expression. The expression of these candidate genes should be analyzed in the relevant tissues during normal and stressed situations. To find suitable reference genes it was crucial that the genes were stably expressed also during a situation of physiological stress. For poikilotermic animals like cod, changes in temperature are normal, but if the changes are faster than physiological compensation, the animals respond with typical stress responses. It has previously been shown that Atlantic cod show stress responses when elevation of water temperature is faster than 1 degree/day, for this reason we chose hyperthermia as stress agent for this experiment.</p> <p>Findings</p> <p>We here describe the expression of eight candidate reference genes from Atlantic cod (<it>Gadus morhua l</it>.) and their stability during thermal stress (temperature elevation of one degree C/day for 5 days). The genes investigated were: Eukaryotic elongation factor 1 alpha, <it>ef1a</it>; 18s ribosomal RNA; <it>18s</it>, Ubiquitin conjugate protein; <it>ubiq</it>, cytoskeletal beta-actin; <it>actb</it>, major histcompatibility complex I; MHC-I light chain, beta-2 -microglobulin; <it>b2m</it>, cytoskeletal alpha-tubulin; <it>tba1c</it>, acidic ribosomal phosphoprotein; <it>rplp1</it>, glucose-6-phosphate dehydrogenase; <it>g6pd</it>. Their expression were analyzed in 6 tissues (liver, head kidney, intestine, spleen, heart and gills) from cods exposed to elevated temperature and compared to a control group. Although there were variations between tissues with respect to reference gene stability, four transcripts were more consistent than the others: <it>ubiq</it>, <it>ef1a</it>, <it>18s </it>and <it>rplp1</it>. We therefore used these to analyze the expression of stress related genes (heat shock proteins) induced during hyperthermia. We found that both transcripts were significantly upregulated in several tissues in fish exposed to increased temperature.</p> <p>Conclusion</p> <p>This is the first study comparing reference genes for RT-qPCR analyses of expression during hyperthermia in Atlantic cod. <it>ef1a, 18s, rplp1 </it>and <it>ubiq </it>transcripts were found to be well suited as reference genes during these experimental conditions.</p

    Uracil DNA N-Glycosylase Promotes Assembly of Human Centromere Protein A

    Get PDF
    Uracil is removed from DNA by the conserved enzyme Uracil DNA N-glycosylase (UNG). Previously, we observed that inhibiting UNG in Xenopus egg extracts blocked assembly of CENP-A, a histone H3 variant. CENP-A is an essential protein in all species, since it is required for chromosome segregation during mitosis. Thus, the implication of UNG in CENP-A assembly implies that UNG would also be essential, but UNG mutants lacking catalytic activity are viable in all species. In this paper, we present evidence that UNG2 colocalizes with CENP-A and H2AX phosphorylation at centromeres in normally cycling cells. Reduction of UNG2 in human cells blocks CENP-A assembly, and results in reduced cell proliferation, associated with increased frequencies of mitotic abnormalities and rapid cell death. Overexpression of UNG2 induces high levels of CENP-A assembly in human cells. Using a multiphoton laser approach, we demonstrate that UNG2 is rapidly recruited to sites of DNA damage. Taken together, our data are consistent with a model in which the N-terminus of UNG2 interacts with the active site of the enzyme and with chromatin

    Removal of Uracil by Uracil DNA Glycosylase Limits Pemetrexed Cytotoxicity: Overriding the Limit with Methoxyamine to Inhibit Base Excision Repair

    Get PDF
    Uracil DNA glycosylase (UDG) specifically removes uracil bases from DNA, and its repair activity determines the sensitivity of the cell to anticancer agents that are capable of introducing uracil into DNA. In the present study, the participation of UDG in the response to pemetrexed-induced incorporation of uracil into DNA was studied using isogenic human tumor cell lines with or without UDG (UDG+/+/UDG−/−). UDG−/− cells were very sensitive to pemetrexed. Cell killing by pemetrexed was associated with genomic uracil accumulation, stalled DNA replication, and catastrophic DNA strand breaks. By contrast, UDG+/+ cells were \u3e10 times more resistant to pemetrexed due to the rapid removal of uracil from DNA by UDG and subsequent repair of the resultant AP sites (abasic sites) via the base excision repair (BER). The resistance to pemetrexed in UDG+/+ cells could be reversed by the addition of methoxyamine (MX), which binds to AP sites and interrupts BER pathway. Furthermore, MX-bound AP sites induced cell death was related to their cytotoxic effect of dual inactivation of UDG and topoisomerase IIα, two genes that are highly expressed in lung cancer cells in comparison with normal cells. Thus, targeting BER-based therapy exhibits more selective cytotoxicity on cancer cells through a synthetic lethal mechanism

    Comparison of Proliferation and Genomic Instability Responses to WRN Silencing in Hematopoietic HL60 and TK6 Cells

    Get PDF
    BACKGROUND: Werner syndrome (WS) results from defects in the RecQ helicase (WRN) and is characterized by premature aging and accelerated tumorigenesis. Contradictorily, WRN deficient human fibroblasts derived from WS patients show a characteristically slower cell proliferation rate, as do primary fibroblasts and human cancer cell lines with WRN depletion. Previous studies reported that WRN silencing in combination with deficiency in other genes led to significantly accelerated cellular proliferation and tumorigenesis. The aim of the present study was to examine the effects of silencing WRN in p53 deficient HL60 and p53 wild-type TK6 hematopoietic cells, in order to further the understanding of WRN-associated tumorigenesis. METHODOLOGY/PRINCIPAL FINDINGS: We found that silencing WRN accelerated the proliferation of HL60 cells and decreased the cell growth rate of TK6 cells. Loss of WRN increased DNA damage in both cell types as measured by COMET assay, but elicited different responses in each cell line. In HL60 cells, but not in TK6 cells, the loss of WRN led to significant increases in levels of phosphorylated RB and numbers of cells progressing from G1 phase to S phase as shown by cell cycle analysis. Moreover, WRN depletion in HL60 cells led to the hyper-activation of homologous recombination repair via up-regulation of RAD51 and BLM protein levels. This resulted in DNA damage disrepair, apparent by the increased frequencies of both spontaneous and chemically induced structural chromosomal aberrations and sister chromatid exchanges. CONCLUSIONS/SIGNIFICANCE: Together, our data suggest that the effects of WRN silencing on cell proliferation and genomic instability are modulated probably by other genetic factors, including p53, which might play a role in the carcinogenesis induced by WRN deficiency

    Nucleolin Inhibits G4 Oligonucleotide Unwinding by Werner Helicase

    Get PDF
    The Werner protein (WRNp), a member of the RecQ helicase family, is strongly associated with the nucleolus, as is nucleolin (NCL), an important nucleolar constituent protein. Both WRNp and NCL respond to the effects of DNA damaging agents. Therefore, we have investigated if these nuclear proteins interact and if this interaction has a possible functional significance in DNA damage repair.Here we report that WRNp interacts with the RNA-binding protein, NCL, based on immunoprecipitation, immunofluorescent co-localization in live and fixed cells, and direct binding of purified WRNp to nucleolin. We also map the binding region to the C-terminal domains of both proteins. Furthermore, treatment of U2OS cells with 15 µM of the Topoisomerase I inhibitor, camptothecin, causes the dissociation of the nucleolin-Werner complex in the nucleolus, followed by partial re-association in the nucleoplasm. Other DNA damaging agents, such as hydroxyurea, Mitomycin C, and aphidicolin do not have these effects. Nucleolin or its C-terminal fragment affected the helicase, but not the exonuclease activity of WRNp, by inhibiting WRN unwinding of G4 tetraplex DNA structures, as seen in activity assays and electrophoretic mobility shift assays (EMSA).These data suggest that nucleolin may regulate G4 DNA unwinding by WRNp, possibly in response to certain DNA damaging agents. We postulate that the NCL-WRNp complex may contain an inactive form of WRNp, which is released from the nucleolus upon DNA damage. Then, when required, WRNp is released from inhibition and can participate in the DNA repair processes

    Comparison of low temperature adaptation ability in three native and two hybrid strains of the rotifer Brachionus plicatilis species complex

    Get PDF
    The low temperature adaptation ability of five selected strains of the Brachionus plicatilis species complex, i.e., three native strains [ Japanese (NH1L), Australian, German] and two hybrid strains [♀NH1L and ♂Australian (N × A) and ♀NH1L and ♂German (N × G),was investigated in terms of life history traits, reproductive characteristics, and mobility under different thermal conditions (12 and 25 °C). The life history traits of these five strains included a longer lifespan, reproduction period and generation times at 12 °C than at 25 °C, combined with reduced lifetime egg and offspring production. At 12 °C, the intrinsic rate of natural increase was higher in NH1L and N × A strains. Reproductive characteristics determined at 12 °C by batch culture showed active population growth for NH1L and N × G strains, while no resting egg production was observed in all of the strains tested. The ratio of swimming rotifers at 12 °C was monitored every hour for 6 h (short term) and every day for 10 days (long term). In the short-term study there was a 81% ratio of swimming rotifers of the NH1L strain, while other strains exhibited low swimming ratios (75% swimming ratio from the initial day of the study. These results suggest that outcrossing of rotifer strains is useful to obtain live food resources for the larviculture of cold water fish
    • …
    corecore