30 research outputs found
Manipulating the alpha level cannot cure significance testing
We argue that making accept/reject decisions on scientific hypotheses, including a recent call for changing the canonical alpha level from p = 0.05 to p = 0.005, is deleterious for the finding of new discoveries and the progress of science. Given that blanket and variable alpha levels both are problematic, it is sensible to dispense with significance testing altogether. There are alternatives that address study design and sample size much more directly than significance testing does; but none of the statistical tools should be taken as the new magic method giving clear-cut mechanical answers. Inference should not be based on single studies at all, but on cumulative evidence from multiple independent studies. When evaluating the strength of the evidence, we should consider, for example, auxiliary assumptions, the strength of the experimental design, and implications for applications. To boil all this down to a binary decision based on a p-value threshold of 0.05, 0.01, 0.005, or anything else, is not acceptable
A many-analysts approach to the relation between religiosity and well-being
The relation between religiosity and well-being is one of the most researched topics in the psychology of religion, yet the directionality and robustness of the effect remains debated. Here, we adopted a many-analysts approach to assess the robustness of this relation based on a new cross-cultural dataset (N=10,535 participants from 24 countries). We recruited 120 analysis teams to investigate (1) whether religious people self-report higher well-being, and (2) whether the relation between religiosity and self-reported well-being depends on perceived cultural norms of religion (i.e., whether it is considered normal and desirable to be religious in a given country). In a two-stage procedure, the teams first created an analysis plan and then executed their planned analysis on the data. For the first research question, all but 3 teams reported positive effect sizes with credible/confidence intervals excluding zero (median reported β=0.120). For the second research question, this was the case for 65% of the teams (median reported β=0.039). While most teams applied (multilevel) linear regression models, there was considerable variability in the choice of items used to construct the independent variables, the dependent variable, and the included covariates
A Many-analysts Approach to the Relation Between Religiosity and Well-being
The relation between religiosity and well-being is one of the most researched topics in the psychology of religion, yet the directionality and robustness of the effect remains debated. Here, we adopted a many-analysts approach to assess the robustness of this relation based on a new cross-cultural dataset (N = 10, 535 participants from 24 countries). We recruited 120 analysis teams to investigate (1) whether religious people self-report higher well-being, and (2) whether the relation between religiosity and self-reported well-being depends on perceived cultural norms of religion (i.e., whether it is considered normal and desirable to be religious in a given country). In a two-stage procedure, the teams first created an analysis plan and then executed their planned analysis on the data. For the first research question, all but 3 teams reported positive effect sizes with credible/confidence intervals excluding zero (median reported β = 0.120). For the second research question, this was the case for 65% of the teams (median reported β = 0.039). While most teams applied (multilevel) linear regression models, there was considerable variability in the choice of items used to construct the independent variables, the dependent variable, and the included covariates
Crowdsourcing hypothesis tests: Making transparent how design choices shape research results
To what extent are research results influenced by subjective decisions that scientists make as they design studies? Fifteen research teams independently designed studies to answer fiveoriginal research questions related to moral judgments, negotiations, and implicit cognition. Participants from two separate large samples (total N > 15,000) were then randomly assigned to complete one version of each study. Effect sizes varied dramatically across different sets of materials designed to test the same hypothesis: materials from different teams renderedstatistically significant effects in opposite directions for four out of five hypotheses, with the narrowest range in estimates being d = -0.37 to +0.26. Meta-analysis and a Bayesian perspective on the results revealed overall support for two hypotheses, and a lack of support for three hypotheses. Overall, practically none of the variability in effect sizes was attributable to the skill of the research team in designing materials, while considerable variability was attributable to the hypothesis being tested. In a forecasting survey, predictions of other scientists were significantly correlated with study results, both across and within hypotheses. Crowdsourced testing of research hypotheses helps reveal the true consistency of empirical support for a scientific claim.</div
A many-analysts approach to the relation between religiosity and well-being
The relation between religiosity and well-being is one of the most researched topics in the psychology of religion, yet the directionality and robustness of the effect remains debated. Here, we adopted a many-analysts approach to assess the robustness of this relation based on a new cross-cultural dataset (N=10,535 participants from 24 countries). We recruited 120 analysis teams to investigate (1) whether religious people self-report higher well-being, and (2) whether the relation between religiosity and self-reported well-being depends on perceived cultural norms of religion (i.e., whether it is considered normal and desirable to be religious in a given country). In a two-stage procedure, the teams first created an analysis plan and then executed their planned analysis on the data. For the first research question, all but 3 teams reported positive effect sizes with credible/confidence intervals excluding zero (median reported β=0.120). For the second research question, this was the case for 65% of the teams (median reported β=0.039). While most teams applied (multilevel) linear regression models, there was considerable variability in the choice of items used to construct the independent variables, the dependent variable, and the included covariates
Multidimensional signals and analytic flexibility: Estimating degrees of freedom in human speech analyses
Recent empirical studies have highlighted the large degree of analytic flexibility in data analysis which can lead to substantially different conclusions based on the same data set. Thus, researchers have expressed their concerns that these researcher degrees of freedom might facilitate bias and can lead to claims that do not stand the test of time. Even greater flexibility is to be expected in fields in which the primary data lend themselves to a variety of possible operationalizations. The multidimensional, temporally extended nature of speech constitutes an ideal testing ground for assessing the variability in analytic approaches, which derives not only from aspects of statistical modeling, but also from decisions regarding the quantification of the measured behavior. In the present study, we gave the same speech production data set to 46 teams of researchers and asked them to answer the same research question, resulting insubstantial variability in reported effect sizes and their interpretation. Using Bayesian meta-analytic tools, we further find little to no evidence that the observed variability can be explained by analysts’ prior beliefs, expertise or the perceived quality of their analyses. In light of this idiosyncratic variability, we recommend that researchers more transparently share details of their analysis, strengthen the link between theoretical construct and quantitative system and calibrate their (un)certainty in their conclusions
Rośliny alternatywne rolnictwa XXI wieku i perspektywy ich wykorzystania
W nadchodzącym XXI stuleciu wzrośnie zainteresowanie roślinami alternatywnymi (ang. new crops) z wielu powodów, które pojawiły się w ostatnich latach XX wieku. Należą do nich między innymi: produkcja odnawialnych surowców dla przemysłu i odnawialnych źródeł energii; zwiększanie różnorodności biologicznej pokarmu; ekologizacja rolnictwa; biologiczna rekultywacja gleby; przeciwdziałanie efektowi cieplarnianemu; produkcja przez rośliny transgeniczne leków, przeciwciał, szczepionek, hemoglobiny i in. Badania nad nowymi roślinami uprawnymi prowadzone są na szeroką skalę przez wiele międzynarodowych i krajowych organizacji, takich jak: ECLAIR, FLAIR, CAMAR, USDA, ARC. W ostatnich dwóch dziesięcioleciach XX wieku wprowadzono do uprawy w różnych krajach kilkadziesiąt gatunków roślin alternatywnych. W roku 1999 rośliny transgeniczne uprawiano już na powierzchni około 40 milionów hektarów. Te fakty pozwalają na stwierdzenie, że w XXI wieku nowe rośliny uprawne w dużym stopniu zastąpią na polach dotychczasowe tradycyjne rośliny uprawne.The interest in alternative crops (new crops) will increase in the coming century for many reasons, which arose during last years of the 20th century.
Among the others, following reasons ought to be mentioned: production of renewable raw materials for the industry and renewable energy sources; increasing biological diversity of the food; ecological pressure on the agriculture and farming systems; biological soil recultivation; neutralization of the grenhouse effect; supplying of medicines, antibodies, vaccines, haemoglobin etc., by the transgenic plants. The research works on new crops are carried out by a number of international and local organizations such as ECLAIR, FLAIR, CAMAR, USDA, ARC. Within last two decades of 20th century the dozens of alternative plant species have been introduced into practical cultivation in different countries. The cultivation of transgenic plants in 1999 covered in total the acreage of abont 40 million hectares. The above facts suggest that in the coming century the traditionally cultivated crops to great extent will be replaced in fields by the new, alternative crops