30 research outputs found

    Inhibition of Hippocampal Synaptic Activity by ATP, Hypoxia or Oxygen-Glucose Deprivation Does Not Require CD73

    Get PDF
    Adenosine, through activation of its A1 receptors, has neuroprotective effects during hypoxia and ischemia. Recently, using transgenic mice with neuronal expression of human equilibrative nucleoside transporter 1 (hENT1), we reported that nucleoside transporter-mediated release of adenosine from neurons was not a key mechanism facilitating the actions of adenosine at A1 receptors during hypoxia/ischemia. The present study was performed to test the importance of CD73 (ecto-5β€²-nucleotidase) for basal and hypoxic/ischemic adenosine production. Hippocampal slice electrophysiology was performed with CD73+/+ and CD73βˆ’/βˆ’ mice. Adenosine and ATP had similar inhibitory effects in both genotypes, with IC50 values of approximately 25 Β΅M. In contrast, ATP was a less potent inhibitor (IC50β€Š=β€Š100 Β΅M) in slices from mice expressing hENT1 in neurons. The inhibitory effects of ATP in CD73+/+ and CD73βˆ’/βˆ’ slices were blocked by the adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) and were enhanced by the nucleoside transport inhibitor S-(4-nitrobenzyl)-6-thioinosine (NBTI), consistent with effects that are mediated by adenosine after metabolism of ATP. AMP showed a similar inhibitory effect to ATP and adenosine, indicating that the response to ATP was not mediated by P2 receptors. In comparing CD73βˆ’/βˆ’ and CD73+/+ slices, hypoxia and oxygen-glucose deprivation produced similar depression of synaptic transmission in both genotypes. An inhibitor of tissue non-specific alkaline phosphatase (TNAP) was found to attenuate the inhibitory effects of AMP and ATP, increase basal synaptic activity and reduce responses to oxygen-glucose deprivation selectively in slices from CD73βˆ’/βˆ’ mice. These results do not support an important role for CD73 in the formation of adenosine in the CA1 area of the hippocampus during basal, hypoxic or ischemic conditions, but instead point to TNAP as a potential source of extracellular adenosine when CD73 is absent

    Gene expression profiling of tumour epithelial and stromal compartments during breast cancer progression

    Get PDF
    The progression of ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC) marks a critical step in the evolution of breast cancer. There is some evidence to suggest that dynamic interactions between the neoplastic cells and the tumour microenvironment play an important role. Using the whole-genome cDNA-mediated annealing, selection, extension and ligation assay (WG-DASL, Illumina), we performed gene expression profiling on 87 formalin-fixed paraffin-embedded (FFPE) samples from 17 patients consisting of matched IDC, DCIS and three types of stroma: IDC-S ( 10 mm from IDC or DCIS). Differential gene expression analysis was validated by quantitative real time-PCR, immunohistochemistry and immunofluorescence. The expression of several genes was down-regulated in stroma from cancer patients relative to normal stroma from reduction mammoplasties. In contrast, neoplastic epithelium underwent more gene expression changes during progression, including down regulation of SFRP1. In particular, we observed that molecules related to extracellular matrix (ECM) remodelling (e.g. COL11A1, COL5A2 and MMP13) were differentially expressed between DCIS and IDC. COL11A1 was overexpressed in IDC relative to DCIS and was expressed by both the epithelial and stromal compartments but was enriched in invading neoplastic epithelial cells. The contributions of both the epithelial and stromal compartments to the clinically important scenario of progression from DCIS to IDC. Gene expression profiles, we identified differential expression of genes related to ECM remodelling, and specifically the elevated expression of genes such as COL11A1, COL5A2 and MMP13 in epithelial cells of IDC. We propose that these expression changes could be involved in facilitating the transition from in situ disease to invasive cancer and may thus mark a critical point in disease development

    Molecular Signatures Reveal Circadian Clocks May Orchestrate the Homeorhetic Response to Lactation

    Get PDF
    Genes associated with lactation evolved more slowly than other genes in the mammalian genome. Higher conservation of milk and mammary genes suggest that species variation in milk composition is due in part to the environment and that we must look deeper into the genome for regulation of lactation. At the onset of lactation, metabolic changes are coordinated among multiple tissues through the endocrine system to accommodate the increased demand for nutrients and energy while allowing the animal to remain in homeostasis. This process is known as homeorhesis. Homeorhetic adaptation to lactation has been extensively described; however how these adaptations are orchestrated among multiple tissues remains elusive. To develop a clearer picture of how gene expression is coordinated across multiple tissues during the pregnancy to lactation transition, total RNA was isolated from mammary, liver and adipose tissues collected from rat dams (nβ€Š=β€Š5) on day 20 of pregnancy and day 1 of lactation, and gene expression was measured using Affymetrix GeneChips. Two types of gene expression analysis were performed. Genes that were differentially expressed between days within a tissue were identified with linear regression, and univariate regression was used to identify genes commonly up-regulated and down-regulated across all tissues. Gene set enrichment analysis showed genes commonly up regulated among the three tissues enriched gene ontologies primary metabolic processes, macromolecular complex assembly and negative regulation of apoptosis ontologies. Genes enriched in transcription regulator activity showed the common up regulation of 2 core molecular clock genes, ARNTL and CLOCK. Commonly down regulated genes enriched Rhythmic process and included: NR1D1, DBP, BHLHB2, OPN4, and HTR7, which regulate intracellular circadian rhythms. Changes in mammary, liver and adipose transcriptomes at the onset of lactation illustrate the complexity of homeorhetic adaptations and suggest that these changes are coordinated through molecular clocks

    MWCNTs of different physicochemical properties cause similar inflammatory responses, but differences in transcriptional and histological markers of fibrosis in mouse lungs

    Get PDF
    Multi-walled carbon nanotubes (MWCNTs) are extensively produced and used in composite materials and electronic applications, thus increasing risk of worker and consumer exposure. MWCNTs are an inhomogeneous group of nanomaterials that come in various lengths, shapes and with different metal contaminations, which makes hazard evaluation difficult. However, several studies suggest that length plays an important role in the toxicity induced by MWCNTs. How the length influences toxicity at the molecular level is yet to be characterized. Female C57BL/6 mice were exposed by single intratracheal instillation to 18, 54 or 162 Β΅g/mouse of a short MWCNT (NRCWE-026, 847Β±102 nm in length) or long MWCNT (NM-401, 4048Β±366 nm in length). The two MWCNTs were extensively characterized. Lung tissues were harvested 24 h, 3 d and 28 d after exposure. We employed DNA microarrays, bronchoalveolar lavage fluid analysis, comet assay and dichlorodihydrofluorescein assay in order to profile the pulmonary responses. Bioinformatics tools were then applied to compare and contrast the expression profiles and to build a length dependent property-response matrix for gene-by-gene comparison. The toxicogenomic analysis of the global mRNA changes after exposure to the short, entangled NRCWE-026 or the longer, stiffer NM-401 showed high degree of similarities. The toxicity of both MWCNTs was driven by strong inflammatory and acute phase responses, which peaked at day 3 and was observed both in bronchoalveolar lavage cell influx and in gene expression profiles. The inflammatory response was sustained at post-exposure day 28. Also, at the sub-chronic level, we identified a sub-set of 14 fibrosis related genes that were uniquely differentially regulated after exposure to NM-401. Acellular ROS production occurred almost exclusively with NRCWE-026, however the longer NM-401 induced in vivo DNA strand breaks and differential regulation of genes involved in free radical scavenging more readily than NRCWE-026. Our results indicate that the global mRNA response after exposure to MWCNTs is length independent at the acute time points, but that fibrosis may be length dependent sub-chronic end point.JRC.H.6-Digital Earth and Reference Dat

    Transcriptomic Signatures of Ash (Fraxinus spp.) Phloem

    Get PDF
    Ash (Fraxinus spp.) is a dominant tree species throughout urban and forested landscapes of North America (NA). The rapid invasion of NA by emerald ash borer (Agrilus planipennis), a wood-boring beetle endemic to Eastern Asia, has resulted in the death of millions of ash trees and threatens billions more. Larvae feed primarily on phloem tissue, which girdles and kills the tree. While NA ash species including black (F. nigra), green (F. pennsylvannica) and white (F. americana) are highly susceptible, the Asian species Manchurian ash (F. mandshurica) is resistant to A. planipennis perhaps due to their co-evolutionary history. Little is known about the molecular genetics of ash. Hence, we undertook a functional genomics approach to identify the repertoire of genes expressed in ash phloem.Using 454 pyrosequencing we obtained 58,673 high quality ash sequences from pooled phloem samples of green, white, black, blue and Manchurian ash. Intriguingly, 45% of the deduced proteins were not significantly similar to any sequences in the GenBank non-redundant database. KEGG analysis of the ash sequences revealed a high occurrence of defense related genes. Expression analysis of early regulators potentially involved in plant defense (i.e. transcription factors, calcium dependent protein kinases and a lipoxygenase 3) revealed higher mRNA levels in resistant ash compared to susceptible ash species. Lastly, we predicted a total of 1,272 single nucleotide polymorphisms and 980 microsatellite loci, among which seven microsatellite loci showed polymorphism between different ash species.The current transcriptomic data provide an invaluable resource for understanding the genetic make-up of ash phloem, the target tissue of A. planipennis. These data along with future functional studies could lead to the identification/characterization of defense genes involved in resistance of ash to A. planipennis, and in future ash breeding programs for marker development
    corecore