223 research outputs found

    Evidence for Secretion of a Netrin-1-like Protein by Tetrahymena thermophila

    Get PDF
    Netrin-1 is a pleiotropic signaling molecule with targets in many mammalian cell types. Though first characterized as a chemotactic signal involved in neuronal guidance during development, netrin-1 has since been found to have a regulatory role in angiogenesis, and is also used as a biomarker in certain cancers. Tetrahymena thermophila are free-living protists that rely on chemotactic signals to find food, as well as to escape predators. Chemoattractants cause the cells to swim faster in the forward direction, while chemorepellents cause ciliary reversal, resulting in movement of the cell away from the noxious stimulus. We have previously found that netrin-1 is a chemorepellent in T. thermophila. More recently, we have detected netrin-1 by ELISA in both whole cell extract and secreted protein samples obtained from T. thermophila. In addition, we have immunolocalized netrin-1 staining to the cytosol of T. thermophila using an anti-netrin-1 antibody. We are currently running Western blots to determine the molecular weight of this protein and compare it to its vertebrate counterparts. Further experimentation is needed to determine the physiological role of this protein in T. thermophila

    Quasi-elastic and inelastic inclusive electron scattering from an oxygen jet target

    Full text link
    The results of an experiment on inclusive electron scattering from an oxygen jet target, performed in a wide range of energy and momentum transfer covering both quasi-elastic and Δ\Delta(1232) resonance regions, are reported. In the former region the theoretical predictions, obtained including effects of nucleon-nucleon correlations in both initial and final states, give a good description of the experimental data. In the inelastic region a broadening as well as a damping of the resonant part of the cross section with respect to the free nucleon case is observed. The need of more detailed calculations including nuclear structure effects on the electroproduction cross section of nucleon resonances is highlighted.Comment: to appear in Nucl. Phys.

    Systematics of 2+ states in C isotopes from the ab initio no-core shell model

    Full text link
    We study low-lying states of even carbon isotopes in the range A = 10 - 20 within the large- scale no-core shell model (NCSM). Using several accurate nucleon-nucleon (NN) as well as NN plus three-nucleon (NNN) interactions, we calculate excitation energies of the lowest 2+ state, the electromagnetic B(E2; 2+1 -> 0+1) transition rates, the 2+1 quadrupole moments as well as se- lected electromagnetic transitions among other states. Recent experimental campaigns to measure 2+-state lifetimes indicate an interesting evolution of nuclear structure that pose a challenge to reproduce theoretically from first principles. Our calculations do not include any effective charges or other fitting parameters. However, calculated results extrapolated to infinite model spaces are also presented. The model-dependence of those results is discussed. Overall, we find a good agree- ment with the experimentally observed trends, although our extrapolated B(E2; 2+1 -> 0+1) value for 16C is lower compared to the most recent measurements. Relative transition strengths from higher excited states are investigated and the influence of NNN forces is discussed. In particular for 16C we find a remarkable sensitivity of the transition rates from higher excited states to the details of the nuclear interactions.Comment: 22 pages, 8 figures, preprint version. Accepted for publication in Journal of Physics G: Nuclear and Particle Physic

    Nietzsche’s Epistemic Perspectivism

    Get PDF
    Nietzsche offers a positive epistemology, and those who interpret him as a skeptic or a mere pragmatist are mistaken. Instead he supports what he calls per- spectivism. This is a familiar take on Nietzsche, as perspectivism has been analyzed by many previous interpreters. The present paper presents a sketch of the textually best supported and logically most consistent treatment of perspectivism as a first- order epistemic theory. What’s original in the present paper is an argument that Nietzsche also offers a second-order methodological perspectivism aimed at enhancing understanding, an epistemic state distinct from knowledge. Just as Descartes considers and rejects radical skepticism while at the same time adopting methodological skepticism, one could consistently reject perspectivism as a theory of knowledge while accepting it as contributing to our understanding. It is argued that Nietzsche’s perspectivism is in fact two-tiered: knowledge is perspectival because truth itself is, and in addition there is a methodological perspectivism in which distinct ways of knowing are utilized to produce understanding. A review of the manner in which understanding is conceptualized in contemporary epistemology and philosophy of science serves to illuminate how Nietzsche was tackling these ideas

    Cyclical hydraulic pressure pulses reduce breakdown pressure and initiate staged fracture growth in PMMA

    Get PDF
    Using unique experimental equipment on large bench-scale samples of Polymethylmethacrylate, used in the literature as an analogue for shale, we investigate the potential benefits of applying cyclical hydraulic pressure pulses to enhance the near-well connectivity through hydraulic fracturing treatment. Under unconfined and confined stresses, equivalent to a depth of up to 530 m, we use dynamic high-resolution strain measurements from fibre optic cables, complemented by optical recordings of fracture development, and investigate the impact of cyclical hydraulic pressure pulses on the number of cycles to failure in Polymethylmethacrylate at different temperatures. Our results indicate that a significant reduction in breakdown pressure can be achieved. This suggests that cyclic pressure pulses could require lower power consumption, as well as reduced fluid injection volumes and injection rates during stimulation, which could minimise the occurrence of the largest induced seismic events. Our results show that fractures develop in stages under repeated pressure cycles. This suggests that Cyclic Fluid Pressurization Systems could be effective in managing damage build-up and increasing permeability. This is achieved by forming numerous small fractures and reducing the size and occurrence of large fracturing events that produce large seismic events. Our results offer new insight into cyclical hydraulic fracturing treatments and provide a unique data set for benchmarking numerical models of fracture initiation and propagation

    Proton Spin Structure in the Resonance Region

    Get PDF
    We have examined the spin structure of the proton in the region of the nucleon resonances (1.085 GeV < W < 1.910 GeV) at an average four momentum transfer of Q^2 = 1.3 GeV^2. Using the Jefferson Lab polarized electron beam, a spectrometer, and a polarized solid target, we measured the asymmetries A_parallel and A_perp to high precision, and extracted the asymmetries A_1 and A_2, and the spin structure functions g_1 and g_2. We found a notably non-zero A_perp, significant contributions from higher-twist effects, and only weak support for polarized quark--hadron duality.Comment: 6 pages, 4 figures, REVTeX4, similar to PRL submission, plots colorized and appenix added, v3: minor edit, matches PR

    Rate-dependence of the compressive and tensile strength of granites

    Get PDF
    The strength and rupture of geomaterials are integral to subsurface engineering practices, such as those required to optimise geothermal energy extraction. Of particular importance is the time- and strain-rate-dependence of material strength, which dictates the energy released upon failure, and impacts the magnitude of induced seismicity, fracture architecture and thus hydraulic conductivity and system permeability. Here, we performed a series of uniaxial compression and Brazilian tensile strength measurements at a range of deformation rates in order to constrain the impact of strain rate on the strength of G603 granite. The dense, low permeability, medium-grained granites were mechanically tested at 4 strain rates (or diametric equivalent strain rates in the case of Brazilian tests) from 10−5 to 10−2 s−1, such that sample failure was achieved in anything from below 1s at the fastest rate in tension, to over 1000s at the slowest rate in compression. The applied rates encompassed those recommended by ISRM and ASTM material testing standards for compressive and Brazilian tensile testing. We found a significant rate strengthening effect, whereby compressive and tensile strength both increased by approximately 35 % across the 4 orders of magnitude of strain rate tested. We found that the static Young's modulus remained relatively constant across this range of deformation rates, however variability was reduced at faster rates, owing to the reduced time for equilibration of the system to imposed stresses. The lower strength at slower strain rates causes smaller stress drops, indicating that rocks driven to compressive and tensile failure at slower rates release less energy upon failure. Such constraints of the strain-rate-dependence of material strength, in contrast to the use of standardised material characteristics conventionally used in Engineering Geology applications, will prove useful as we develop increasingly sophisticated strategies such as cyclic soft stimulation to access resources using less energy, whilst reducing environmental risk and producing less waste
    corecore