151 research outputs found

    Oceanographic results from the VERTEX 3 Particle Interceptor Trap Experiment off central Mexico,October-December,1982

    Get PDF
    In this report, we present oceanographic results from VERTEX 3 Particle Interceptor Trap (PIT) experiment conducted off the western-coast of Mexico during October to November 1982. The oceanographic data presented here were obtained during three cruise legs by Moss Landing Marine Laboratory scientists aboard R/V Cayuse while the detailed chemical studies were done by other scientists aboard R/V Wecoma. Only the oceanographic data will be presented in this report. (PDF contains 82 pages

    RPANDA: an R package for macroevolutionary analyses on phylogenetic trees

    Get PDF
    A number of approaches for studying macroevolution using phylogenetic trees have been developed in the last few years. Here, we present RPANDA, an R package that implements model‐free and model‐based phylogenetic comparative methods for macroevolutionary analyses. The model‐free approaches implemented in RPANDA are recently developed approaches stemming from graph theory that allow summarizing the information contained in phylogenetic trees, computing distances between trees, and clustering them accordingly. They also allow identifying distinct branching patterns within single trees. RPANDA also implements likelihood‐based models for fitting various diversification models to phylogenetic trees. It includes birth–death models with i) constant, ii) time‐dependent and iii) environmental‐dependent speciation and extinction rates. It also includes models with equilibrium diversity derived from the coalescent process, as well as a likelihood‐based inference framework to fit the individual‐based model of Speciation by Genetic Differentiation, which is an extension of Hubbell's neutral theory of biodiversity. RPANDA can be used to (i) characterize trees by plotting their spectral density profiles (ii) compare trees and cluster them according to their similarities, (iii) identify and plot distinct branching patterns within trees, (iv) compare the fit of alternative diversification models to phylogenetic trees, (v) estimate rates of speciation and extinction, (vi) estimate and plot how these rates have varied with time and environmental variables and (vii) deduce and plot estimates of species richness through geological time. RPANDA provides investigators with a set of tools for exploring patterns in phylogenetic trees and fitting various models to these trees, thereby contributing to the ongoing development of phylogenetics in the life sciences

    Characterization of Pfiesteria Ichthyocidal Activity

    Get PDF
    Letter to the Editor regarding article: Drgon, T., et al. 2005. Characterization of ichthyocidal activity of Pfiesteria piscicida: Dependence on the dinospore cell density. Appl. Environ. Microbiol. 71:519–52

    A search for binary systems among the nearest L dwarfs

    Get PDF
    We have used the NICMOS NIC1 camera on the Hubble Space Telescope to obtain high angular resolution images of 51 ultracool dwarfs in the immediate Solar Neighbourhood. Nine systems are resolved as binary, with component separations from 1.5 and 15 AU. All of the systems have components with similar luminosities, and, consequently, high mass ratios, q > 0.8. Limiting analysis to L dwarfs within 20 parsecs, the observed binary fraction is 12(+7/-3). Applying Bayesian analysis to our dataset, we derive a mass-ratio distribution that peaks strongly at unity. Modelling the semi-major axis distribution as a logarithmic Gaussian, the best fit is centered at log(a_0) = 0.8 AU (~6.3 AU), with a (logarithmic) width of 0.3. The current data are consistent with an overall binary frequency of ~24%.Comment: 29 pages, 4 tables, 8 figures; accepted for publication in A

    Harmful algal blooms and eutrophication : examining linkages from selected coastal regions of the United States

    Get PDF
    Author Posting. © Elsevier B.V., 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Harmful Algae 8 (2008): 39-53, doi:10.1016/j.hal.2008.08.017.Coastal waters of the United States (U.S.) are subject to many of the major harmful algal bloom (HAB) poisoning syndromes and impacts. These include paralytic shellfish poisoning (PSP), neurotoxic shellfish poisoning (NSP), amnesic shellfish poisoning (ASP), ciguatera fish poisoning (CFP) and various other HAB phenomena such as fish kills, loss of submerged vegetation, shellfish mortalities, and widespread marine mammal mortalities. Here, the occurrences of selected HABs in a selected set of regions are described in terms of their relationship to eutrophication, illustrating a range of responses. Evidence suggestive of changes in the frequency, extent or magnitude of HABs in these areas is explored in the context of the nutrient sources underlying those blooms, both natural and anthropogenic. In some regions of the U.S., the linkages between HABs and eutrophication are clear and well documented, whereas in others, information is limited, thereby highlighting important areas for further research.Support was provided through the Woods Hole Center for Oceans and Human Health (to DMA), National Science Foundation (NSF) grants OCE-9808173 and OCE-0430724 (to DMA), OCE-0234587 (to WPC), OCE04-32479 (to MLP), OCE-0138544 (to RMK), OCE-9981617 (to PMG); National Institute of Environmental Health Sciences (NIEHS) grants P50ES012742-01 (to DMA) and P50ES012740 (to MLP); NOAA Grants NA96OP0099 (to DMA), NA16OP1450 (to VLT), NA96P00084 (to GAV and CAH), NA160C2936 and NA108H-C (to RMK), NA860P0493 and NA04NOS4780241 (to PMG), NA04NOS4780239-02 (to RMK), NA06NOS4780245 (to DWT). Support was also provided from the West Coast Center for Oceans and Human Health (to VLT and WPC), USEPA Grant CR826792-01-0 (to GAV and CAH), and the State of Florida Grant S7701617826 (to GAV and CAH)

    Knockdown of brain-derived neurotrophic factor in specific brain sites precipitates behaviors associated with depression and reduces neurogenesis

    Get PDF
    Depression has been associated with reduced expression of brain-derived neurotrophic factor (BDNF) in the hippocampus. In addition, animal studies suggest an association between reduced hippocampal neurogenesis and depressive-like behavior. These associations were predominantly established based on responses to antidepressant drugs and alterations in BDNF levels and neurogenesis in depressive patients or animal models for depressive behavior. Nevertheless, there is no direct evidence that the actual reduction of the BDNF protein in specific brain sites can induce depressive-like behaviors or affect neurogenesis in vivo. Using BDNF knockdown by RNA interference and lentiviral vectors injected into specific subregions of the hippocampus we show that a reduction in BDNF expression in the dentate gyrus, but not the CA3, reduces neurogenesis and affects behaviors associated with depression. Moreover, we show that BDNF has a critical function in neuronal differentiation, but not proliferation in vivo. Finally, we found that a specific BDNF knockdown in the ventral subiculum induces anhedonic-like behavior. These findings provide substantial support for the neurotrophic hypothesis of depression and specify anatomical and neurochemical targets for potential antidepressant interventions. Moreover, the specific effect of BDNF reduction on neuronal differentiation has broader implications for the study of neurodevelopment and neurodegenerative diseases

    Carbon Nanotubes in Tissue Engineering

    Get PDF
    For their peculiar features carbon nanotubes (CNTs) are emerging in many areas of nanotechnology applications. CNT-based technology has been increasingly proposed for biomedical applications, to develop biomolecule nanocarriers, bionanosensors and smart material for tissue engineering purposes. In the following chapter this latter application will be explored, describing why CNTs can be considered an ideal material able to support and boost the growth and the proliferation of many kind of tissues

    Neuron-glial Interactions

    Get PDF
    Although lagging behind classical computational neuroscience, theoretical and computational approaches are beginning to emerge to characterize different aspects of neuron-glial interactions. This chapter aims to provide essential knowledge on neuron-glial interactions in the mammalian brain, leveraging on computational studies that focus on structure (anatomy) and function (physiology) of such interactions in the healthy brain. Although our understanding of the need of neuron-glial interactions in the brain is still at its infancy, being mostly based on predictions that await for experimental validation, simple general modeling arguments borrowed from control theory are introduced to support the importance of including such interactions in traditional neuron-based modeling paradigms.Junior Leader Fellowship Program by “la Caixa” Banking Foundation (LCF/BQ/LI18/11630006
    • 

    corecore