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A major focus of evolutionary neurobiology has been on whether different regions of the eutherian 

brain evolve in concert, and how free the brain is to evolve independently of body plans. Since the 

eutherian brain is loosely modularized, such that one region is rarely isolated for specialization at the 

expense of others, but the design of modularization itself can be adapted by tweaking developmental 

programs, the degree to which brain regions must evolve in concert and can evolve independently may 

carry a deep phylogenetic signal. Using data collected from preserved brain tissue of 37 primate,  21 

carnivore, and 15 other eutherian species (spanning 11 orders), I examined the phylogenetic level at 

which the proliferation of neurons and glia in the primary visual cortex and hippocampus proper, as 

well as granular layer volumes of the dentate gyrus and cerebellum, may be constrained by conserved 

developmental programs. In doing so, I was able to test  for cellular signatures of (1) evolutionary 

changes in metabolic activity,  (2) phylogenetic divergences, (3) specializations in  behavior, and (4) 

developmental constraints. The degree to which disparate brain regions evolve in concert is shown to 

be  generally  conserved in  Eutheria,  although a  derived ability  to  evolve  regions  independently is 

observed along the primate lineage. Using a separate dataset on placental and life-histroy character 

states, a comprehensive comparative phylogenetic approach was used to resolve relationships among 

five aspects of placental structure and to identify syndromes of placental morphology with life-history 

variables. My results support two discrete biological phenotypes of placental morphology and life-

history,  which are  shown to have  an evolutionary affect  on allocortical,  but  not  neocortical,  brain 

organization. I have provided a new perspective on exploring how developmental constraints – acting 

both within and without the brain – may affect brain organization at the cellular level, and the extent to 

which those constraints have been adapted along certain eutherian lineages.
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INTRODUCTION

Since brain size is subject to significant heritability (Thompson et al 2001; Geschwind et al. 

2002; Wright et al. 2002; reviewed in Winterer & Goldman 2003), hypothetical selective pressures 

directing  brain evolution in hominins have included hunting (Washburn & Lancaster 1968; Calvin 

1983), tool-making (Tobias 1981; Reader & Laland 2002; Stout et al 2008) and long-distance running 

(Bramble & Lieberman 2004), and in other mammals have been extended more generally to activity 

period (Barton 1996), social group size (Joffe & Dunbar 1997), diet (Eisenberg & Wilson 1978; 

Clutton-Brock & Harvey 1980; Hutcheon et al 2002), and tactical deception (Byrne & Corp 2004). 

However, while the study of brain size variation remains integral to the study of mammalian brain 

evolution, it may also be useful to ask the following: What changes in internal reorganization have 

resulted from or effected massive increases in brain size? And what other biological systems have 

constrained evolutionary variation in the brain?

Evidence for major phyletic differences in the cellular organization of mammalian brains has 

increased with advancing comparative histological studies. Phylogenetic signals in the cellular density 

of cortical columns and in the morphology and biochemistry of neuronal phenotypes have been 

reported in rodents (Celio 1990; Beaulieu 1993; Skoglund et al 1996b), bats and Eulitophyla (Valverde 

1986), cetaceans (Garey et al 1985; Haug 1987; Hof et al 1992, 2007), carnivores (Peters & Yilmaz 

1993), and primates (Zilles et al 1986; Peters & Yilmaz 1991; Preuss & Goldman-Rakic 1991; Preuss 

et al 1992;; Hof et al 2001). Further studies have reported differentiated expressions of calcium-

binding proteins in different taxa (Glezer et al 1992; Preuss & Kaas 1996; del Rio & DeFelipe 1997; 

Preuss 2001), qualitative and quantitative differences in cortical projection layers in primates (Preuss 

2001), species-specific quantities of von Economo neurons (Nimchinsky et al 1999; Vogt et al 1995; 

Butti et al 2009; Hakeem et al 2009), and diversity of cellular scaling relationships in different 

mammalian orders (Herculano-Houzel et al 2007; Azevedo et al 2009; Herculano-Houzel 2010). 

Additionally, the configuration of structural and functional topographical maps that compose the 

mammalian brain (Kaas 1982; Passingham et al 2002), although ostensibly conserved at a cursory 

level, show many examples of phylogenetic proliferation, addition, and segregation (Ramon-Moliner & 

Nauta 1966; Lende 1969; Kaas 1982, 1987; Butler 1994; Krubitzer 1995; Northcutt & Kaas 1995; 

Catania et al 1999a; Zeki 2003). While homologous features exist across mammalian brains (e.g., the 

basic arrangement of cortical laminae), universal modular architecture does not exist, and the argument 
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to consider brain size as an index of general functional capacity common to all mammals, therefore, 

lacks support.

Recent studies have shown that neuronal densities in hominoids vary independently of overall 

brain size (Sherwood & Hof 2008), that features of cortical microstructure in homologous regions 

display phylogenetic diversity both across and within mammalian orders (Semendeferi et al 1998; 

Hutsler et al 2005), and that subtle modifications in neural microstructure or gene expression may 

considerably impact behavior in the absence of brain size variation (Hammock & Young 2005; 

Sherwood et al 2008). These studies demonstrate that interspecific variation in factors underlying brain 

size variation (e.g., cellular density, degree of dendritic arborization, and cell soma size) may better 

reflect evolutionary adaptations within lineages. And while it is clear that some species are behaviorally 

adapted to certain practices or faculties, and that certain brain areas are devoted to mediating quite 

specific behaviors, it is  not clear whether quantitative adaptation particular to one region will prima 

facie affect the rest of the brain, or even whether one region can evolve independently of functionally 

unrelated regions. The assumption that conserved neurogenetic scheduling in the mammalian brain 

constrains the concerted evolution of different brain regions may not be satisfactorily tested using gross 

morphology, as it has been historically (Huxley 1863; Darwin 1871; Le Gros Clark 1959; Jerison 1973; 

Finlay & Darlington 1995; Barton 1996; Joffe & Dunbar 1997; Pawlowski et al 1998; Byrne & Corp 

2004; also see Healy & Rowe 2007).

The implication that glial cells may regulate the generation of new neurons (Song et al 2002; 

Horner & Palmer 2003; Nedergaard et al 2003), influence the development and synaptogenesis of those 

neurons (Pfrieger & Barres 1997; Kang et al 1998; Haydon 2001; Ullian et al 2001), monitor 

neurometabolic interactions at the synaptic cleft (Laming et al 2000; Hertz et al 2001), generally be 

required for dense synaptic networks to achieve advanced degrees of local modulation and control and 

to bypass axonal size constraints in increasingly larger brains, suggests an evolutionary role for a 

relative increase in glial cells in larger-brained species. However, the rate of this relative increase is 

unknown and its expression in specific brain regions has only begun to be tested.

Using data collected from preserved brain tissue, the current study compared neuronal and glial 

cell densities in the primary visual cortex (V1) and subfields of the hippocampus proper (CA1-3), 

volumetric estimates of the granule cell and molecular layers of the dentate gyrus, and volumetric 

estimates of the granule cell layer of the cerebellum in 37 primate species, 21 carnivore species, and 15 

other mammalian species (spanning seven orders). The aim of the study was to examine phyletic 
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diversity in the quantitative histological organization of homologous cortical areas and establish 

cellular signatures of (1) evolutionary changes in metabolic activity, (2) phylogenetic divergences, (3) 

specializations in behavior, and (4) developmental constraints. Using a separate dataset on placental 

and life-history character states, collected from the literature, phylogenetic methods were employed for 

ancestral reconstruction, mutational mapping, and association analysis to resolve associations between 

five aspects of placental structure and to identify combinations, or syndromes, of placental morphology. 

Twenty life-history characters were mapped onto the eutherian phylogeny to examine how they may 

have influenced, over evolutionary time, the multivariate diversification of placental structures. The 

two datasets were used to provide evidence for an evolutionary relationship between elements of 

placentation and levels of glia and neurons in the mammalian brain.

I provide evidence for cellular signatures of phylogenetic divergences in primates and 

carnivores that are better explained by placental characteristics and behavioral specializations than 

overall or regional brain size. I show that conserved organization and functionality in the hippocampus 

has not completely safeguarded its cellular composition during mammalian evolution, and that a strong 

association between cellular composition of the hippocampus and model of placentation indicates a 

cirtical evolutionary role for prenatal development in the maintenance and evolution of neurogenetic 

scheduling. Finally, I provide evidence for the presence of tight developmental constraints controlling 

the proliferation of different cell types in disparate regions of the mammalian brain, but also for an 

adaptation on those constraints along the primate lineage. I propose that the human neocortex conforms 

to the cellular scaling rules of Old and New World monkeys and that any adaptation to modularity at 

the cellular level may necessarily carry a deep phylogenetic signal.
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CHAPTER 1 
CELLULAR PROCESSES (HOW THE BRAIN EVOLVES)

Neurogenesis and cortical expansion

Cortical size is determined in an individual before any neuronal connections are established. 

Post-mitotic cells, guided along the so-called scaffolding of radial glia, migrate from their origin in the 

ventricular and subventricular zones to the developing cortical plate (Rakic 1972, 1974, 1981), where 

arrays of cells, generated near each other and at the same time,  form radial columns (Kornack & Rakic 

1995). Thus, the cortex is made. The number of neurons in the cortex is approximately determined by 

the number of progenitor cells, the duration of cell-division cycles, and the number of successive cell-

cycles during neurogenesis. The extended duration of cell-division in macaques compared to mice, for 

example, results in more successive rounds of cell division during neurogenesis and, therefore, more 

cortical neurons in macaques than in mice (Kornack & Rakic 1998; Kornack 2000; Rakic 2000). Since 

progenitor cells divide symmetrically (i.e., each progenitor cell produces two progenitor cells), the 

population of progenitor cells increases exponentially, so even a small increase in the number of cell 

divisions (i.e., a prolongation of the cell-division phase) can result in significant surface enlargement of 

the cerebral cortex. Alterations in the duration of neurogenesis, however, which is asymmetrical and 

begins after the population of radial columns has largely  been established, only affect the number of 

neurons in each column (i.e., cortical thickness) (Algan & Rakic 1997). It is generally agreed that 

cortical expansion is a result of increased surface area rather than cortical thickness (Caviness et al 

1995; Rakic 2007). Programmed cell death (apoptosis) is also an important factor in determining 

cortical size. When the genes needed for a cell to die (i.e., caspase 3 and 9) are inactivated in a mouse 

embryo, apoptosis is reduced, an atypically large population of progenitor cells is established, and the 

surface area of the cortical plate is increased (with convolutions) (Kuida et al 1996, 1998). Although 

the mouse embryo dies before parturition when caspase 3 and 9 are artificially inactivated, the observed 

reductions in apoptosis and changes in the timing of cell-cycles, which could produce novel cortical 

features liable to natural selection,  are indicated as potential elements of evolutionary cortical 

expansion (see Fish et al 2008).  

The extraordinary neocorticalization in primates has been attributed to the expansion of a 

subpopulation of progenitor cells in the outer subventricular zone (OSVZ). In mammals, basal 

progenitor cells, a type of cell that emerges from the division of the more common apical progenitor 

cells, migrate basally and retract their apical process before mitosis (Haubensak et al 2004; Miyata et  
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al 2004; Noctor et al 2004; Gotz & Huttner 2005; Kriegstein et al 2006; Farkas & Huttner 2008; 

Pontious et al 2008). Since they have no processes, basal progenitor cells are unpolarized and divide 

symmetrically – 90% of the time into neurons, 10% into basal progenitor cells (Noctor et al 2004; Wu 

et al 2005; Attardo et al 2008). As these cells divide, they accumulate along a secondary proliferative 

zone (Fig. 1), the subventricular zone (SVZ). In primates, the SVZ has increased in size in relation to 

other mammals (Cheung et al. 2007), but may have also evolved two morphologically distinct layers: 

the inner SVZ (ISVZ), which contains mammalian-typical basal progenitor cells; and the OSVZ, which 

is considerably thicker than the inner layer and contains elongated, radially aligned nuclei with basal 

processes that can reach the pial surface. The radial morphology and expression of progenitor markers 

(e.g., Pax6 and Sox2) in primate OSVZ cells suggest a close relation with apical progenitor cells in the 

ventricular zone (Smart et al 2002; Kriegstein et al 2006), but it is a point of contention whether OSVZ 

cells are like or unlike epithelial cells (Fish et al 2008). Although most cortical neurons in mammals are 

derived from basal progenitor cells (Haubensak et al 2004), most upper-layer cortical neurons in 

primates are generated from OSVZ cells (Lukaszewicz et al 2005), which indicates that the OSVZ 

played a significant evolutionary role in the extraordinary neocortical expansion observed in primates 

and mammals (Cheung et al. 2010). There is a strong correlation between an evolutionary increase of 

supragranular layer complexity in the cortex and increasing subventricular zone depth (Fig. 1).

Glia

In order to understand the functional significance of evolutionary changes in glia-neuron ratios, 

and identify the pressures selecting on those changes, I will review what glia do. In the broadest terms, 

glia are neural cells that are incapable of transmitting electrical signals in the form of action potentials 

(i.e., glia are not neurons). Instead of firing action potentials, glial cells guide the migration of neurons 

during embryonic development, regulate the ionic balance of extracellular fluids in the brain (Laming 

et al 2000; Hertz et al 2001), form an impermeable lining in the blood-brain barrier, lower the 

concentration of neurotransmitters near the synaptic cleft to terminate synaptic transmission (He & Sun 

2007), synthesize myelin, and minimize neuronal damage and death (Allen & Barries 2005). The past 

decade has produced studies showing glia to be more than support cells; showing, in fact, that not only 

the structural architecture, but the communication pathways, activation thresholds, and plasticity of the 

brain rely on interactions of glia with vasculature (Doetsch 2003; Nedergaard et al 2003; Pellerin & 

Magistretti 2004; Allen & Barres 2005; Seifert et al 2006; He & Sun 2007).  There are different types 
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Figure 1.  (i) Transects of presumptive area 17 in a primate brain, (ii) an illustration of primate 
and rodent germinal zones in the dorsal cortex at equivalent developmental stages, and (iii) an 
illustration of the interspecific correlation between depth of subventricular zone and 
supragranular layer complexity. The depths of layers are to a common scale in (ii). The internal 
details of each layer in (b) and (c) are not to scale, but depict the orientation, shape, and 
relatively packing density of nuclei in each layer. In the primate, the ventricular zone (VZ) 
progressively decreases in size while the subventricular zone (SVZ) increases, until it is divided 
into an inner SVZ (ISVZ) and outer SVZ (OSVZ) by an intruding inner fiber layer (IFL). In 
contrast, no such division of the SVZ is observed in the rodent, where the VZ is the major 
germinal compartment throughout corticogenesis. Over 75% of cortical neurons destined for the 
upper layers of the primate visual cortex originate from SVZ precursors (Lukaszewicz et al, 
2005). Abbreviations: CP, cortical plate; IZ, intermediate zone; MZ, marginal zone; OFL, outer 
fibre layer; SP, subplate proper. After Smart et al. (2002).
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of glia, distinguished by function and morphology and location, which take on different roles in the 

nervous system: astrocytes, oligodendrocytes, Schwann cells, and microglia. Schwann cells, which are 

located in the peripheral nervous system, and microglia, which are phagocytes and originate separately 

from other types of glia in the nervous system, were not included in the stereologic counts presented 

below and so will not be reviewed here. I will hereafter use glia to mean astrocytes  and 

oligodendrocytes.

A subpopulation of precursor cells generated before embryonic neurogenesis, called radial glia, 

span the cortex with their long processes to provide substrates (so-called scaffolding) along which 

newly generated neurons will migrate (Hatten et al 1988; Malatesta et al 1999; Sauvageot & Stiles 

2002; Sun et al 2003; Villegas et al 2003). During embryonic development, radial glia divide to form 

neural progenitor cells (NPC). These NPC line the ventricles to form a single layer (the ventricular 

zone, VZ), from which they proliferate and sequentially give rise to neurons (Sauvageot & Stiles 2002; 

Sun et al 2003). Once neuronal migration terminates, radial glia divide to form astrocytes. 

Astrocytes are the most abundant type of glial cells and interact extensively with neurons. They 

are distributed isotropically in the cortical gray matter, separating the neuropil into astrocytic-delimited 

domains (Bushong et al 2003; Ogata & Kosaka 2003;Nedergaard et al 2003), and organized as 

networks that communicate through specialized communication channels (so-called gap junctions) 

(Kuffler & Nicholls 1977; Mugnaini 1986; Theis et al 2005; also see Giaume et al 2010). While 

neurons  process information encoded as electrical signals, astrocytes support neurons and the neuronal 

environment by producing trophic agents (e.g., the soluble factors thrombospondins-1 and -2), which 

influence synaptogenesis (Hatten et al 1986; Muller et al 1993; Araque et al 1999; Barres & Smith 

2001; Hidalgo et al 2001;  Allen & Barres 2005). Neurons co-cultured with astrocytes have been shown 

to develop seven-times more synapses, with a seven-fold increase in synaptic efficiency, compared to 

neurons raised in the absence of astrocytes (Pfrieger & Barres 1997; Ullian et al 2001). Glia further 

support the proliferation, maturation, and survival of developing neurons, provide structural, trophic, 

and metabolic support (Nicholls et al 1992;  Pixley 1992; Kandel et al 2000), and modulate neuronal 

activity by keeping the extracellular K+ concentration approximately constant and lowering the 

neurotransmitter concentration to terminate synaptic transmission.(Laming et al 2000; Hertz et al 2001; 

also see Vesce et al 1999). Energetic metabolism in the brain and de novo synthesis of glutamate and γ-

aminobutyric acid (GABA) transmitters are controlled by metabolic interactions between neurons and 

astrocytes. In addition to the pre- and post-synaptic neuronal elements of a synapse, many synapses are 
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enveloped by an astrocytic projection (forming a so-called tripartite synapse), a development that 

allows astrocytes to closely monitor and respond to neuronal activity (Mauch et al 2001; Ullian et al 

2001; Allen & Barres 2005; He & Sun 2007). In response to increased neuronal activity, astrocytes 

signal to blood vessels, which are closely associated with the astrocytic processes, to increase blood 

flow (i.e., provide glucose and oxygen) to the region of increased neuronal activity. However, 

astrocytes do not just regulate the blood flow, but modulate – enhance (Fellin et al 2004; Fiaco & 

McCarthy 2004; Liu et al 2004; Perea & Araque 2005) and suppress (Newman 2003; Zhang et al 2003) 

– neuronal activity through three extracellular ion species: potassium [K+]e, calcium [Ca2+]e, and 

protons [pH]e. The ability of astrocytes to regulate these ion concentrations – extracellular ion 

homeostasis – contributes to the maintenance of neuronal excitability (Barres 1991; Villegas et al 2003; 

for a review of the dynamics of ionic signaling and neuronal communication, see Laming et al. (2000) 

and Bezzi & Volterra (2001)). Glucose metabolism is coupled to glutamate-mediated neuronal activity 

by way of the Na+/K+-ATPase. Electrical activity involves the entry of Na+ to change the membrane 

potential or to provide the energy for uptake of neurotransmitters. This Na+ needs to be pumped out of 

cells again, resulting in the Na+/K+-ATPase consuming ATP. It has been suggested that this promotes 

glycolysis, particularly in astrocytes that take up glutamate, which leads to enhanced lactate release 

from astrocytes, that is used to make ATP by oxidative phosphorylation in neurons to cope with the 

neuronal energy demands associated with synaptic transmission (Bittar et al 1996; Pellerin et al 1998; 

for reviews, see Magistretti 2003; Pellerin & Magistretti 2004; Magistretti 2006). Therefore, by 

secreting factors that regulate synapse formation and providing neurons with energy and substrates for 

neurotransmission, astrocytes induce synapse formation and actively control synaptogenesis, synapse 

number, synapse function, synaptic plasticity, and contribute to homeostasis in the brain (Meshul et al 

1987; Mauch et al 2001; Ullian et al 2001; Barres 2003;Allen & Barres 2005; Haydon & Carmignoto 

2006; Wang & Bordey 2008). 

Neurogenesis in the mature brain is a feature of vertebrates (Altman & Das 1965; Altman 1969; 

Goldman & Nottebhom 1983; Burd & Nottenbohm 1985; Alvarez-Buylla & Lois 1995; Kornack & 

Rakic 1999; Barnea 2010). Astrocytes have been observed to regulate neurogenesis in the SVZ and the 

hippocampal dentate gyrus by promoting stem cell proliferation (Temple & Alvarez-Buylla 1999; Gage 

2001; van Praag et al 2002; Rakic 2002; Song et al 2002). The proposed explanation for this 

phenomenon suggests that in the mature brain some glial cells are neural stem cells (Doetsch et al 

1999; Johansson et al 1999; Alvarez-Buylla et al 2001). Why neurogenesis in the mature brain has 



9

regional specificity is unknown. However, it has been hypothesized that the hippocampus contains 

newer astrocytes compared to other regions (e.g., the spinal cord) (Smith et al 1990) and that 

neurogenesis-inhibiting factors are absent in the hippocampus (Villegas et al 2003). Neither hypothesis 

has proved conclusive.

After neuronal migration has terminated and neurons have been surrounded by astrocytes and 

formed functional synapses, oligodendrocyte differentiation begins. Oligodendrocytes synthesize 

myelin, a lipid-rich membrane that ensheaths axons and increases the conduction velocity of electrical 

impulses. In the absence of myelin sheathing, conduction velocity of an action potential is directly 

proportional to the square root of axonal diameter (Fig. 2). As brain size increases, to maintain a fixed 

low conduction time between brain regions it is therefore necessary to increase axon size dramatically, 

which becomes prohibitively space-consuming in large brains. The ability to decrease axon membrane 

capacitance by wrapping it in myelin, and thus allow a given conduction speed to be achieved with a 

smaller axon, has evolved separately in many phyla (Allman 1999). In addition, the conduction speed is 

proportional to axon diameter in myelinated axons, making it easier to increase conduction speed 

without a disproportionately smaller consumption of space. Furthermore, oligodendrocytes, like 

Figure 2.  The time it takes for a myelinated axon to pass a neuronal signal from one 
hemisphere to the other (1µm) is 60-times short than the time it takes for an unmyelinated axon. 
Pictured is a myelinated axon of a dog (Attwell, personal correspondence).

Unmyelinated axon=300ms

Myelinated axon=5ms
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astrocytes, induce synapse formation between neurons (Allen & Barres 2009).

The proliferation of glial cells in response to trophic cues associated with neuronal activity 

(Barres & Raff 1999; Sherwood et al 2006; Magistretti 2006; Karbowski 2007; Gomez-Pinilla 2008) 

suggests local glia-neuron ratios may be indirect measures of the metabolic support supplied to 

neurons. However, the relatively high glia-neuron ratio in the human brain (~1.4) compared to, for 

example, the mouse brain (~0.3) or the leech brain (~0.04) cannot simply be explained by differences 

in glial metabolic support, which are small across animals and inappreciable across higher vertebrates 

(Nedergaard et al 2003). The requirement of increasingly dense synaptic networks in larger, more 

complex brains for advanced degrees of local modulation and control may better explain the 

evolutionary march of the astrocyte.  The implication that astrocytes may regulate the generation of 

new neurons (Song et al 2002; Horner & Palmer 2003; Nedergaard et al 2003), influence the 

development and synaptogenesis of those neurons (Pfrieger & Barres 1997; Kang et al 1998; Haydon 

2001; Ullian et al 2001), and monitor neurometabolic interactions at the synaptic cleft (Laming et al 

2000; Hertz et al 2001), as well as the need for oligodendrocytes to bypass axonal size constraints in 

increasingly larger brains, may suggest an evolutionary role for a relative increase in glial cells in 

larger-brained species. However, the rate of this relative increase is unknown and is likely to have 

regional specificity.

Brain metabolism

Neural tissue is energetically expensive, both while processing and at rest (Ames et al 1992; 

Attwell & Laughlin 2001; Lennie 2003; Niven et al 2003a; Nawroth et al 2007; Niven et al 2007; 

Scholvinck et al 2008). There is evidence that global blood flow to the brain, compared to the heart or 

liver, remains constant (and local blood flow may increase) during exercise in mammals (Raichle et al 

1976; Orgogozo & Larsen 1979; Zapol 1979; Madsen et al 1993; Ide & Secher 2000). Even brief 

interruptions or minor reductions to the blood flow to the brain may result in long-term consequences 

or severe sensory and motor impairment, respectively (Hornbein 2001; also see Lipton 1999). The 

processes in the brain requiring continuous attention include the synthesis of neurotransmitter 

molecules, the synthesis of proteins and fatty acids, and, by far the major component (Attwell & 

Laughlin 2001), the maintenance of ionic concentration gradients (e.g., Na+, K+, and Ca2+; see above). 

Maintenance of ionic gradients underlies the maintenance of membrane potentials at rest and the 

generation of synaptic and action potentials by sodium-permeable ion channels (Attwell & Laughlin 
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2001; Niven & Laughlin 2008). One of the reasons behind such high costs for neural tissue involves the 

noise and response speed of neural information processing (Laughlin 2001; Niven et al 2007), which 

are measured by the corruption and rate of transfer of the signal, respectively. By increasing the number 

of receptor molecules and ion channels for each neuron, the corruption of the signal is reduced (i.e., the 

signal-to-noise ratio improves) and the transfer rate of the signal improves (Weckstrom & Laughlin 

1995; Laughlin 1996; Niven et al 2003b, 2007). Of course, each additional receptor and ion channel 

incurs a cost. There are other possible ways to improve the signal-to-noise ratio and transfer rate (see 

Niven & Laughlin 2008), but these are inevitably energy-consuming. Therefore, systems of information 

processing (for single neurons as well as neuronal populations) have been under strong selection to 

increase efficiency through, for example, distance-specific coding of information as graded or action 

potentials (Laughlin et al 1998, 2000; Sarpeshkar 1998), the activation/inactivation properties of ion 

channels (Niven et al 2003a,b), and by matching the filter properties of neuronal components to the 

signals they process (Vallet et al 1992; Laughlin & Weckstrom 1993; Laughlin 1994, 1996, 2001; 

Weckstrom & Laughlin 1995; Vahasoyrinki et al 2006; Niven et al 2007), placing brain regions with 

high interconnectivity adjacent to one another (Cherniak 1994, 1995; Chklovskii 2004), reducing the 

amount of redundant information in sensory systems (Atteneave 1954; Barlow 1961; Srinivisan et al 

1982; Sillar & Skorupski 1986; Bell & Grant 1989; Gossard et al 1990, 1991; Wolf & Burrows 1995; 

Li et al 2002; Poulet & Hedwig 2006), and by sparse coding, in which only a small proportion of the 

neurons in a population represent information using a combinatorial code (Levy & Baxter 1996; Vinje 

& Gallant 2000; Balasubramanian et al 2001; Willmore & Tolhurst 2001; Perez-Orive et al 2002; 

Schreiber et al 2002; Olshausen & Field 2004; Hromadka et al 2008). It is not surprising, therefore, 

given the costs of maintaining neural tissue – and the complexity of cost-efficiency – that species living 

in environments without a high demand for a certain sensory system have reduced or lost that sensory 

system (e.g., blind mole rats have reduced their thalamocortical visual system) (David Gray et al 1998), 

or simply selected to reduce the size (i.e., cost) of one system at the expense of another (Aiello & 

Wheeler 1995; Hladik et al 1999; Fish & Lockwood 2003). Despite selective strategies for improving 

cost-efficiency, it seems that information processing in larger systems still incur relatively higher 

energetic costs (Niven et al 2007). 

Evidence of the up-regulation of cortex-specific genes in human evolution (Caceres et al 2003; 

see Vallender et al 2008) suggests an influence of selection pressures on maintaining absolutely and 

relatively higher neuronal activity compared to our last common ancestor with chimpanzees. 
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Furthermore, cerebral glucose metabolism in humans is higher than in macaques (Bohnen et al 1999; 

Bentourka et al 2000; Cross et al 2000; Noda et al 2002), bucking the trend for larger brains to have 

lower metabolic rates (per unit of tissue) than smaller brains (Aiello & Wheeler 1995). The up-

regulation of genes related to lipid metabolism and the importance of dietary docosahexaenoic acid 

with Na+/K+-ATPase activity (Bourre et al 1989; Djemli-Shipkolye et al 2003) may be indicative of the 

importance of dietary changes (e.g., the exploitation of lipid- and DHA-rich thalassic resources or the 

scavenging of organ tissue) in early human brain evolution (see Aiello & Wells 2002; Broadhurst et al 

2002; Crawford 2006; Leonard et al 2007). 
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CHAPTER 2
THE COMPARATIVE METHOD IN NEUROSCIENCE

Brain scaling

The computational capacities of the brain are largely determined by cellular composition 

(Williams & Herrup 1988). In cats, for example, experimental doubling of the number of visual cortical 

neurons excited by one eye is associated with smaller receptive fields and improved discrimination 

abilities (Shook et al 1984).  Thus, species with brains of similar size but different cognitive abilities 

should be expected to differ in cellular composition, and higher taxa with different cognitive 

specializations should be expected to achieve different cellular scaling rules. 

The absence of significant correlations between relative cortical mass and relative neuronal 

number, found in studies of rodents (Nedergaard et al 2003; Herculano-Houzel et al 2006), Scandentia 

(Reichenbach 1989), cetaceans (Marino et al 2008), and primates (Sherwood et al 2006; Herculano-

Houzel 2007), questions the validity of conclusions (e.g., Leiner et al 1991; Douglas & Martin 2004) 

drawn on relative brain mass, and argues against the use of brain volume as a proxy for neuronal 

number or computational capacity across animal orders. Lefebre et al (2004) argue for a correlative of 

volumetric encephalization in supernumerary neurons, in which “extra neurons” are available for 

associative, non-somatic functions, and thus account for increased cognitive flexibility observed in 

rodents with neuronal populations larger than predicted for their body size. Effectively, this means that 

a comparison of any two species with equal encephalization quotients will predict that the species with 

a larger absolute brain size will have superior cognitive abilities and a larger behavioral repertoire 

(Deaner et al 2007; see Krubitzer 2009). However, the phylogenetic level at which this is proposed to 

apply has not been tested (Rothe & Dicke 2005; Herculano-Houzel et al 2007). So far, brain mass has 

been observed to correlate hypermetrically with cortical (grey and white matter) glia-neuron ratios in 

rodents and Eulipotyphla (Herculano-Houzel et al 2006) and isometrically in anthropoids (Herculano-

Houzel et al 2007). It is important to note, however, that neither of these studies corrected for statistical 

non-independence due to phylogenetic relatedness (but see Gabi et al 2010). Furthermore, it is 

problematic interpreting the whole brain in terms of cognitive ability.

The earliest studies of cellular scaling rules in mammalian brains (e.g., Blinkov & Gleezer 

1968; Tower & Young 1973; Stolzenburg et al 1989) frequently claimed that glia-neuron ratios scale 

with brain size, citing, for example, perinatal glia proliferation as a response to inefficient clearance of 

K+ ions due to thicker tissue in the brain as an explanation (Reichenbach 1989). While many of these 
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studies have since been judged as methodologically unsound (Shmitz & Hof 2005), it is still assumed 

that neuronal and glial cell populations increase concertedly with phylogeny and brain size (Kandel 

2000; Doetsch 2003), although explanations now cite functional relationships between neurons and 

glia. One hypothesis suggests that increasingly dense and sophisticated synaptic networks (expansive 

dendritic arbors and long-range projecting axons) require greater degrees of local modulation and 

control – tasks for which glial cells are well suited ( Laming et al 2000; Hertz et al 2001) – and, 

therefore, highly developed regions will have relatively high glia-neuron ratios only if those regions are 

enlarged (Nedergaard et al 2003; Sherwood et al 2006). This is complemented by the hypothesis that 

regions in which neuronal populations are established around birth will be enlarged by a tremendous 

post-natal increase in glial cells (Koenderink et al 1994; Sauvageot & Stiles 2002; Larsen et al 2006). 

Since oligodendrocytes add a volume proportionate to axonal length, higher glia-neuron ratios will in 

theory be concomitant with increased average axonal length and regional volumetric expansion (Friede 

1963; Jehee & Murre 2008). Taken in full, encephalized regions will have significant evolutionary and 

developmental increases in glial cells with respect to a static number of neurons. These hypotheses 

remain speculative, as comparative investigations of glia-neuron ratios in specific brain regions are 

scarce and focus on few species.

The identification of phylogenetic diversity in features of cortical microstructure within 

homologous cortical regions ( Glezer et al 1993; Semendeferi et al 1998 2001; Preuss & Coleman 

2002; Sherwood et al 2003, 2004) suggests that architectural constraints do not govern variation in 

cortical complexity. Although there appear to be constraints on cellular scaling at the mammalian level 

(Prothero 1997; Changizi 2000), those constraints seem to be relaxed at the ordinal or even 

superordinal level. It is likely that, at the species level, variations in neuronal and glial cell density in 

certain brain regions may be explained by evolutionary adaptations within lineages.

Environment, behavior, and placentation

A cortical phenotype is the result of an interaction between the products of gene expression and 

environmental or behavioral factors. Alterations in the sensory environment of a species can change 

that species' cortical map (see Krubitzer & Kaas 2005). For example, the introduction of acoustic noise 

was observed to alter the cortical magnification of particular frequencies in the primary auditory cortex 

in ferrets (Chang & Merzenich 2003), mice selectively bred to have extra whiskers were observed to 

have additional barrels within the barrel field, a distinctive region of the somatosensory cortex that 
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receives contralateral thalamic inputs, of the primary somatosensory cortex (Catania & Kaas 1997), 

and, furthermore, it was shown that the size of the barrel field in mice could be regulated by modifying 

activity through environmental enrichment or whisker clipping during development (Machin et al 

2004). Alternatively, small changes in non-coding regulatory elements could impact spatial and 

temporal expression patterns of key developmental genes, instituting profound phenotypic effects 

( King & Wilson 1975; Preuss et al 2004; Khaitovich et al 2006). Human-specific changes (perhaps 

only regulatory) to MCPH (Autosomal recessive primary microcephaly) and HAR1 (human accelerated 

region) genes, for example, are suggested to have played major roles in evolving the human cortex 

(Prabhakar et al 2005; Woods et al 2005; Fish et al 2006; Pollard et al 2006; Vallender et al 2008; 

Pulvers et al 2010). These studies (and hypotheses) underlie a wide, although not universal, 

observation: species with enhanced behavior specializations have correlated cellular or molecular 

enhancements in the regions of the brain known to mediate those behaviors (Kandel 2006; 

Schoenemann 2006; Krubitzer 2007). The ability to undergo developmental or evolutionary cortical 

field map alterations in size, shape, location, and connectivity with fluctuations in the sensory 

environment may itself be a derived trait (Krubitzer & Kaas 2005; Lee & Erzurumlu 2005; Lee et al 

2005). That is, the ability of a phenotype to respond optimally to its environment assumes selection on 

genes for plasticity rather than for particular phenotypes (Baldwin 1896; 1902; Downing 2004; see 

Kirschner & Gerhart 1998; Earl & Deem 2004).

Historically, the idea that explanatory variables may exist for evolutionary variations in brain 

size has been extrapolated to specific behaviors in hominins (e.g., Stout et al 2008) and to more 

abstract quantities in other mammals. Comparative analyses have assumed that complex behavior (e.g., 

innovation, deception, sociality) requires a relatively large brain. But, by defining the relatively large 

brain as uniquely capable of complex behavior, these analyses have been used to reinforce the original 

assumption that complex behavior drives encephalization (Healy & Rowe 2007). As correlations of 

brain size with activity period (Barton 1996), social group size (Joffe & Dunbar 1997), mating success 

(Pawlowski et al 1998), and tactical deception (Byrne & Corp 2004), to take a few examples, remain 

poorly justified, it may be helpful to ask, not what evolutionary variation in brain size affects, but what 

evolutionary variation in other biological systems affects brain size.

Although most evolutionary explanations for mammalian brain size variation are social or 

ecological, another class of explanations draws on the idea that the brain is not, in fact, a cloistered 

organ. Since neural tissue is metabolically expensive, encephalization must be constrained by the 
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energy available to a species to invest in additional neural tissue (Aiello & Wheeler 1995; Hladik et al 

1999; Niven & Laughlin 2009). Across eutherian mammals, brain size can be log-log regressed against 

body size, metabolic rate, and gestational length with a slope of ~0.67 (Jerison 1973; Martin 1981). 

From these relationships, it has been suggested that brain size is the consequence of general energy 

throughput to the developing brain (Isler & van Schaik 2006). This theory would explain why fruit-

eating species tend to have larger brains than leaf-eating species in many orders (Stephan & Frahm 

1981). 

But this theory fails against a number of its own predictions. Mammals with relatively high 

metabolic rates do not produce relatively large-brained young, as would be expected if infant brain size 

were determined by maternal metabolic rates (McNab 1989; Harvey & Krebs 1990). The slope and 

coefficient of determination for the best-fit line vary depending on which species data (or which 

measurements of species data) are used. A data set can be particularly affected by the inclusion or 

exclusion of baleen whales and small rodents (Smith 1994). And different taxonomic groups exhibit 

different scaling exponents (Martin 1981; Pagel & Harvey 1989; Cappellini 2010). Furthermore, since 

most species-typical body weights are estimated from dead captive animals, which tend to be either 

overweight or emaciated, body size estimates are often unreliable (Economos 1980). There is also some 

concern about the significance of basal metabolic rate (BMR) compared to field metabolic rate (Niven 

& Laughlin 2009).

Gestational length, however, remains a reliable predictor of brain size. Species with relatively 

long gestational lengths produce relatively large-brained neonates (Cunnane & Crawford 2003), 

suggesting that mode of placentation, if it is indeed related to gestation length, may influence neonatal 

growth (Martin 2008).
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CHAPTER 3 
HOW THE BRAIN EVOLVED

Homology 

Homology refers to similarity arising from common ancestry. Since all comparative biological 

studies make explicit assumptions about homology, it is necessary that I explain my understanding of 

homology as it applies to this study. 

Developmental, structural, positional, compositional, and functional features of the object under 

investigation (e.g., the amygdala, bipedality, laughter) can be useful in determining – or proposing – 

homology. Since only those features that can be traced to a common ancestor in a phylogenetic context 

are definitively homologous, congruence in the phylogenetic distribution of the object under 

investigation is the ultimate criterion (and, therefore, method of testing) for homology. 

There have been two competing definitions of homology – phylogenetic and developmental – 

which have slowly been reconciled to incorporate the developmental definition into the phylogenetic 

one. Consequently, our broad definition of homologous traits as inherited from a common ancestor is 

ultimately incomplete.

The generation of different developmental precursors in different species convinced many 

developmental biologists that phylogenetic homology disappears when it is approached from a 

mechanistic perspective (Spemann 1915; de Beer 1971; Sattler 1984; Panchen 1999; Gilbert et al 1996; 

Webster & Goodwin 1996). A generative paradigm was therefore established, in which morphological 

homology can be strictly defined as the structural correspondence of traits. But this proved to be 

limited, and ultimately misleading, because it assumed that possible morphologies are limited by 

universal and constant rules of generative mechanisms and development, and thus evolutionary 

explanations of homology became merely explanatory. It may be that natural selection favors 

developmental processes that are canalized, modular, or constrained by stabilizing selection, so that 

conserved pathways persist, even when the phenotype is unexpressed (Wagner 2001). But this already 

presupposes that generative rules are subject to natural selection (Shubin 1994). Early on, Ernst Mayr 

(1960) suggested that the emergence of new structures reflects the intensification of existing selection 

on certain developmental processes rather than the evolution of new developmental regimes, an idea 

that resonates in “evolution by tinkering” (Jacob 1977), the “evolution of bricolage” (Doboule & 

Wilkins 1998), and the concept of deep homology (McShea 1996; Shubin et al 1997; Gerhart 2000; 

Hall 2002d). On this suggestion we can make two predictions: developmental mechanisms will be 
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conserved (i) when the trait is not generated (e.g., Hall 2003) and (ii) when the morphology of the trait 

is transformed. The first prediction is supported by the idea of deep homology, which is discussed 

below. The second prediction has empirical support and is quite relevant to recognizing homology in 

neurobiology (see Bock 1974; Patterson 1988; Streidter & Northcutt 1991; Bolker & Raff 1996; Arendt 

2005). The premise of this second prediction is the observation that the position of a region (e.g., the 

primary visual cortex) relative to other cell groups tends to be highly conserved (Nieuwenhuys 1994; 

Puells & Medina 2002). Therefore, if structure A in species A has the same topological position as 

structure B in species B, but the histology of structure B differs radically from that in structure A, then 

the derived nature of structure B is considered to be novel by phylogenetic conversion (Streidter 2005), 

which is akin to the aforementioned morphological transformation. The mammalian neocortex, for 

example, is considered homologous to the dorsal pallium found in other vertebrate brains (see Aboitiz 

et al 2003), but it is novel by phylogenetic conversion. The lamination of the lateral geniculate nucleus 

(LGN) in primates, tree shrews, and carnivores, which is homogeneous in monotremes and most 

marsupials, is another example (Sanderson 1974; Kaas et al 1978; Kahn & Krubitzer 2002b). 

A further criticism of the generative paradigm questions whether patently homologous traits can 

be derived from different developmental precursors (de Beer 1971; Hall 1995; Lieberman 1999; Butler 

& Saidel 2000; True & Haag 2001; Leigh 2007). For example, although mammals by default have 

darkly-pigmented irises, lemurs and humans are known to have blue eyes. In humans, this phenotype 

arises from a single nucleotide polymorphism, but by a different (unidentified) process in lemurs 

(Bradley et al 2009). In two congeneric species of tree frogs (genus Rana), which have homologous 

lenses, one uses the optic cup to induce the lens, while the other does not (Jacobson & Sater 1988; Hall 

1999 2003), due to heterochronous eye development relative to body development (McNamara 1995; 

Zelditch 2001). Gastrulation, neural crest formation, and germ cell formation are other examples of 

structural homologues arising via different developmental processes in different taxa, which 

demonstrate that development may be modified early on in ontogeny without affecting the morphology 

of the adult phenotype (Bolker 1994; Hall 1995b, 1998 2003; Minsuk & Keller 1996). Fortunately, 

there is another term to take credit for many of these phenomena.

The term homoplasy was introduced by ER Lankester (1870) to describe phenotypic similarity 

resulting from independent evolution. Expounding on the interconnectedness of homology and 

homoplasy, David Wake (1996) explains that if homology is “the same thing”, then homoplasy is the 

appearance of “sameness”. Several types, or mechanisms, of homoplasy are recognized. Reversal is the 
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most straightforward, defined as the loss (hairlessness in cetaceans) or reduction (hairlessness in 

humans) of a phenotype in a lineage (Hall 2003). Parallelism explains homoplastic traits inherited by 

common genetic factors at a deeper phylogenetic level than the associated trait (Saether 1983, 1986). 

And convergence is the appearance of similar features in independent lineages. It is difficult 

(sometimes impossible) to distinguish the evolutionary patterns of parallelism and convergence from 

one another (Arendt & Reznick 2008). What underlies both is the importance of phylogenetic relations; 

neither can be interpreted without explicitly acknowledging the phylogenetic level of its application. 

The higher the phylogenetic level (i.e., the greater phyletic distance between the convergent traits), 

however, the more likely we are to find homologous developmental processes (Hall 2007). When we 

consider the convergent evolution of wings in insects and birds, for example, we are likely to find 

underlying developmental processes in the common ancestry of insects and birds to allow the evolution 

of wings (Shubin et al 1997). This discovery largely dismissed the ideal that historically defined 

homology and homoplasy as antithetical. 

Brian Hall (2007) argues that homology and homoplasy are both types of descent. The presence 

of a trait may be discontinuous, but the underlying developmental mechanism for that trait can persist. 

Therefore, we may trace the evolutionary history of an assumed homoplastic trait in two species and 

find that a distant common ancestor of those species possessed the genetic or developmental 

mechanism for that trait. This is called deep homology (McShea 1996; Shubin et al 1997; Gerhart 

2000; Hall 2002d; Hall & Hallgrimsson 2007) and is strictly defined as a shared genetic regulatory 

mechanism used to build morphologically and phylogenetically divergent traits (Shubin et al 2009). 

The idea of deep homology was originally applied to show that the pattern of analogous appendages 

and body outgrowths observed in vertebrates, insects, and other animals was contingent on the 

deployment of the Distal-less gene, which originated in a common ancestor in the coelomate phyla 

(Shubin et al 1997). The idea has since been extrapolated to explain relationships between homologs of 

morphological structures and genetic circuits. Charles Lockwood (1999) mapped postcranial characters 

onto alternative trees for the platyrrhine family Atelidae to analyze the evolution of certain character 

traits. Adaptations to climbing and suspension were observed to be such strong selective forces that 

homoplasy was identified as the dominant source of shared similarity in the data sets based on climbing 

anatomy (Lockwood 1999; Lockwood & Fleagle 1999). This emphasizes the role of homoplasy as 

evidence of shared ancestry, even if that ancestry is very distant. 

 The idea of homology now becomes directly related to our phylogenetic context: the more 



20

phylogenetically distant the common ancestor, the more opportunity for modification and convergence 

(i.e., homoplasy); the more phylogenetically recent the common ancestor, the greater the likelihood of 

phenotypic similarity (i.e., homology). In this light, homology can be further defined as an epigenetic 

concept,  in which development is viewed as a trajectory of a complex physical system with multiple 

stable states, so that homologs are traits (genetic or morphological) that appear reliably within that 

system as it perpetuates itself through stabilizing selection (Streidter 1998). The practical implication of 

this epigenetic concept is the definition of homology as a continuum that addresses the parallax of 

shared development (see Hall 2002d 2003 2007).

Mammalian brain

Mammals evolved in the early Mesozoic from cynodonts (Luo et al 2002). Broadly, fossil 

evidence and cladistic analyses suggest that centered hind limbs, oxidative metabolism, and 

endothermy evolved just prior to the origin of mammals (Bennett 1991; Blob 2001). It is possible to 

discern a number of derived traits of the ancestral mammalian brain. 

Craniofacial morphology of early mammalian radiations and comparative molecular studies of 

extant mammalian species can be used to reconstruct early neural adaptations in the mammalian 

lineage. Comparative analyses of eyes in living tetrapods show that color vision in placental mammals 

was significantly reduced to red-green color-blindness (Jacobs 1993; Ahnelt & Kolb 2000). The 

enlarged nasal cavities of early mammalian fossil species, as well as evidence that mice have more than 

1000 different olfactory receptor genes (compared to less than 100 in nonmammalian vertebrates), 

suggest early expansion of the olfactory system (Freitag et al 1998; Dryer 2000). Fossil endocasts (e.g., 

Chulsanbaatar vulgaris) further indicate that the olfactory bulb constituted about 10% of the total 

ancestral mammalian brain, which is comparable to what is found in hedgehogs and opossums 

(Stephan et al 1981; Kielan-Jaworowska 1983, 1984; Jerison 1990; Catania 2000). The appearance of 

ear drums, long coiled cochleas, and hair cells that amplify the intracochlear vibrations (Webster et al 

1992; Dallos & Evans 1995) suggest increased sensitivity in the mammalian auditory system. 

Furthermore, fossil data (e.g., Morganucodon) reveal the presence of ossicles in early mammals, but 

not protomammals, which would have structurally and functionally uncoupled chewing and hearing 

and allowed the ear bones to become specialized for hearing (Kermack & Rigney 1981; Allin & 

Hopson 1992; Frost & Masterton 1994; Meng & Wyss 1995). The first evidence of a detached middle 

ear appears in the late protomammal Hadrocodium, which also appears to have had an endocranium 
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significantly larger than expected for a protomammal of its body size (Kielan-Jaworowska 1986, 1997; 

Luo et al 2001). While there does not appear to be a causal relationship between detachment of the 

middle ear bones and encephalization (Rowe 1996b; Wang et al 2001; Luo et al 2002), it has been 

suggested that brain size increased as a response to the derived ability to hear higher frequencies 

(Streidter 2005). The absence of an homologous auditory cortex in non-mammals supports this 

hypothesis, although the available evidence ends there. The most conspicuous derived feature of the 

mammalian brain, compared to other non-mammalian vertebrates, is the neocortex.

It is debated whether the sauropsid dorsal ventricular ridge (DVR) or reptilian dorsal cortex can 

be considered homologous to the mammalian neocortex (see Aboitiz et al 2003). While it is outside the 

scope of this thesis to assess whether either of these structures is truly homologous to the neocortex, 

differences between the reptilian dorsal cortex and mammalian neocortex can be used to catalog some 

of the derived features of the mammalian brain (Fig. 3). 

The primitive dorsal cortex of a turtle has four divisions, which receive major inputs from the 

dorsal thalamus. Most of the projection neurons, particularly from the LGN, are similar to mammalian 

pyramidal neurons (Connors & Kriegstein 1986; Desan 1988). Most strikingly, the reptilian dorsal 

cortex has only one prominent cell layer, sandwiched between two layers of dendrites and axons, 

compared to the six-layered neocortex (Butler & Hodos 2005). A seeming effect of this increased 

(a) (b)

Figure 3. The organization of the adult telencephalon in (a) reptiles and (b) mammals. Color-coding 
indicates pallial (green), striatal (blue), and pallidal (purple) domains. Abbreviations: ADVR, anterior 
dorsal ventricular ride; Cd, caudate; GP, globus pallidus; Hp, hippocampus; OB, olfactory bulb; 
PDVR, posterior dorsal ventricular ridge; Pt, putamen. Adapted from Jarvis (1991).   
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lamination was the radial movement of dorsal thalamic axons, compared to the tangential movement in 

the dorsal cortex (Diamond & Ebnder 1990; Super & Uylings 2001), which allowed individual 

thalamic axons to project to fewer pyramidal neurons (Butler 1995). This, in turn, facilitated the 

emergence of neurons with small receptive fields and of radially and functionally organized cell 

columns (Raizada & Grossberg 2003). The wiring pattern in the neocortex, where most long 

connections run through underlying white matter, is more efficient than the wiring in the dorsal cortex, 

where axons are interspersed among neuronal cell bodies (Murre & Sturdy 1995; Wen & Chklovskii 

2005; Chen et al 2006; Wang et al 2008), making scalability an adaptive consequence of the neocortex. 

This may explain why large neocortices are more common in mammals than large dorsal cortices are in 

reptiles.

Differences exist between mammals and non-mammalian vertebrates in sub-cortical structures 

as well, although these differences have not been as extensively documented. The hippocampal 

formation (HF) remained elusive in non-mammals until relatively recently. It was initially thought that 

the turtle's medial cortex was homologous to the mammalian HF (Holmgren 1922, 1925). However, 

subsequent studies showed this was not the case. Investigations using axon tracing were able to locate 

the homologous HF through projections to the highly conserved ipsilateral septum (Krayniak & Siegel 

1978; Neary 1990). This structure was later shown to be implicated in spatial memory in the same way 

the HF is in rodents, although the pathway by which sensory information reaches the HF has changed 

dramatically in mammals (Colombo & Broadbent 2000; Salas et al 2003).

In mammals, the neocortex and olfactory cortex project to the entorhinal cortex (EC). 

Therefore, all sensory information passes through the EC on its way to the cornu Ammonis (CA) fields 

and the dentate gyrus (DG). In non-mammals, there is no such topographical distinction between input 

and processing (Neary 1990; Ulinksi 1990; Hoogland & Vermeulen-Vanderzee 1995). Although most 

subdivisions and connections found in the mammalian HF have also been reported in the avian HF 

(Montagnese et al 1996; Szekely 1999; Colombo & Broadbent 2000; Hough et al 2002; Kahn et al 

2003), the absence of those subdivisions and connections in reptiles makes convergence the most 

parsimonious interpretation. If we assume that the reptilian medial cortex is homologous to the 

mammalian DG (Perez-Clausell 1988; Iglesia & Lopez-Garcia 1997), then it seems that evolution of 

the mammalian DG involved the loss of direct sensory inputs from the dorsal thalamus and direct 

projections out of the HF, transforming the DG from a major sensorimotor integration center into part 

of a processing zone that communicates mainly with the neocortex (Streidter 2005). There is also 
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evidence that the striatum, like the HF, has changed its major source of input from the thalamus to the 

neocortex (Parent & Hazrati 1995a,b), despite the highly conserved features of the mammalian striatum 

(Medina et al 1997; Jiao et al 2000). 

Total brain size

The concept of relative brain size was introduced by Georges Cuvier (1837), who related brain 

size to body size by a straightforward isometric equation. This was amended by Brandt (1867), Snell 

(1891), and Dubois (1897), who interpreted the relationship as allometric, showing that a power 

function could best describe the dependence of brain size on body size. Encephalization quotient (EQ) 

was more recently adopted as a measure of predicted brain size for observed body size, which is 

thought to be a more accurate system of gauging relative brain size – and, therefore, intelligence – in 

different species (perhaps because humans exceed all other mammals by this system). Many authors 

have tried to discern the biological significance of EQ, most notably Harry Jerison, who argued that the 

brain scales with body surface as a reflection of the neural demands of somatic processes (Jerison 

1973) . However, Jerison could not explain why brain regions unrelated to somatic processing also 

scale with body size (Fox & Wilczynski 1986). Further confounding this system is its sensitivity to the 

species sampled to drive the exponential parameters. The scaling relationship of primates, for example, 

is 12% steeper than that estimated for mammals (Martin 1981). In the face of different scaling 

relationships for different taxonomic groups, it is difficult to explain EQ as a reflection of body surface 

(Schoenemann 2006). 

It is, nevertheless, difficult to discard brain size as a factor in interpreting selection pressures on 

functional evolution of the brain. Echolocating bats, for example, have subcortical auditory systems 63-

times smaller than humans have, but in bats this system constitutes 1.6% of total brain size, compared 

to 0.015% in humans (Glendenning & Masterton 1998). If subcortical auditory system size is regressed 

against brain size, we see that echolocating bats have a subcortical auditory system larger than 

predicted for brain size, whereas humans have one smaller than predicted. Since bats are more 

dependent on hearing than humans (Dalland 1965), this system of measurement makes intuitive sense. 

Furthermore, the pattern of changes in brain size – and the apparent evolutionary costs involved in 

those changes (see Chapter 1, Brain metabolism)– strongly argue for an adaptive cognitive explanation 

of encephalization in humans. In primates, encephalization is correlated with longer gestational lengths, 

increased altriciality, and delayed reproduction (Harvey & Clutton-Brock 1985), in addition to a further 
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endothermic cost of maintaining an encephalized brain (Falk 1990). If these costs did not exist, then 

large-brained species would have a selective advantage. Reproductive benefits must have been at least 

marginally greater for large-brained species, a consideration that lends functional significance to 

relative and absolute brain size.

Before discussing the evolution of brain and body size, I would like to briefly review the 

developmental stages that may affect brain and body size (also see Chapter 1, Neurogenesis and 

cortical expansion).

Neuronal precursor tissue is signaled to partition from the embryo during gastrulation. The cells 

divide several times over before differentiating into neurons and glia. When the population of precursor 

cells is depleted, neurogenesis terminates (adult neurogenesis exists in certain brain structures, but this 

does not contribute to gross morphological increases in the brain). Following this, most brain growth is 

due to glial cell proliferation, axonal myelination, and enlarging neurons (Jessell et al 2000). In 

precocial species, this process is more or less completed at birth, so any postnatal increases in body size 

will consequently reduce the relative size of the brain. Relatively large-brained species, therefore, will 

produce infants that are large-brained at birth and/or infants that undergo a long postnatal development 

period that includes brain growth. In primates, compared to most other mammals, a greater proportion 

of the embryo is partitioned to become neuronal precursor tissue. And in humans, postnatal brain 

development, but not postnatal body development, is quite lengthy, even compared to chimpanzees 

(Streidter 2005). The mechanisms that underlie allometric brain and body growth across mammals are 

not fully understood (see Stern & Emlen 1999).

Relative brain size has increased and decreased repeatedly along different mammalian lineages 

(Streidter 2005; Montgomery et al 2010). The fossil record suggests that 50-150 million years ago 

mammalian relative brain size was similar to extant marsupial relative brain size (Jerison 1973), which 

is smaller than the average relative brain size found in extant monotremes and eutherians. The largest 

relative brain sizes in mammals belong to humans, dolphins, and elephants, which is a good argument 

for the convergence of independent increases in relative brain size along different lineages. Decreases 

in relative brain size have been observed in species of bats, shrews, tenrecs (Eisenberg 1981; Mace et  

al 1981) and even marmosets (Montgomery et al 2010), which, too, is a good argument for 

convergence. The observation that increases in relative brain size were often followed by major 

radiations may explain why the increases outnumber the decreases (Eldredge & Gould 1972; Sol et al 

2002; Streidter 2005). Although some of the increases and decreases can be explained by dwarfism and 
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gigantism, respectively (e.g., Kamiya & Pirlot 1988), increases in relative brain size along most 

lineages have been associated with increases in absolute body size (Stanley 1973; Alroy 1998). This 

should not be surprising. While some small invertebrates may allow the cerebral ganglia to spill into 

the thorax (Beutel & Haas 1998), this is not an option for mammals. Large mammals will generally 

have less difficulty accommodating increases in brain size (perhaps with the exception of humans), 

while many small mammals would approach insurmountable difficulties trying to accommodate a 

larger brain (Northcutt & Streidter 2002).

Theories of evolutionary encephalization have claimed social, physiological, and ecological 

variables. Attempts to correlate behavior (or so-called social intelligence) with relative brain size often 

succumb to phylogenetic non-independence or overlook that our definition of intelligence is worded in 

human terms – those that fall into the latter camp ignore Nikolaas Tinbergen's (1951) warning that 

different species experience identical tasks differently. Social group size has been taken as an 

approximation for social intelligence, but correlations between relative brain size and social group size 

have been inconsistent (Dunbar 1998; Allman 1999; Kudo & Dunbar 2001). Diet has been a recurrent 

explanatory variable used for relative brain size, citing correlations between frugivory and relative 

brain size in bats (Eisenberg & Wilson 1978; Hutcheon et al 2002) and primates (Clutton-Brock & 

Harvey 1980). These theories are closely tied, although not necessarily explicitly, with proposed 

physiological constraints on encephalization. Robert Martin (1981) emphasizes the limiting role of 

metabolic resources in brain growth across species, an idea that is expicitly tested by the expensive-

tissue hypothesis (Aiello & Wheeler 1995). However, a plot of the residuals of brain size and metabolic 

rate for mammals reveals that no correlation exists (although, this does not preclude the expensive-

tissue hypothesis from applicability in hominin evolution (Leonard & Robertson 1997; Milton 2000; 

Aiello & Wells 2002; Cappellini 2010)). Foraging, tactical deception, grooming, and many other 

measures of intelligence have been forwarded with little concrete success as explanations for 

encephalization (see Healy & Rowe 2007; Park et al 2007). But it is yet possible that more than one of 

these factors contributed to evolutionary increases in brain size. While the expression of these measures 

in mammals is behaviorally distinct, they may not necessarily map onto distinct regions of the brain. In 

this case, it may be informative to look at evolutionary changes in the size of different brain regions.

Regional brain size

Mammalian brains are composed of structurally and functionally distinct cell groups, which 
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have been identified to configure a structural and functional topographical map (Kaas 1982; 

Passingham et al 2002). These maps seem to be largely conserved at a cursory level, but there are many 

examples of phylogenetic proliferation, addition, and segregation (Ramon-Moliner & Nauta 1966; 

Lende 1969; Kaas 1982, 1987; Butler 1994; Krubitzer 1995; Northcutt & Kaas 1995; Catania et al 

1999a; Zeki 2003). It is clear that some species are behaviorally adapted to certain practices or 

faculties, and that certain brain regions are devoted to mediating quite specific behaviors, so it would 

seem likely – and in many taxa it is the case – that there should be some correlation between behavior 

and regional brain size. But the degree to which one region can evolve independently of functionally 

unrelated regions is unclear. In the previous section, I reviewed what insights the data available can 

give us about the functional significance of encephalization and concluded that there is no consensus 

on the explicit relationship between behavior and encephalization. So, in this section, I will largely 

ignore the behavioral implications of regional brain size and discuss the structural constraints on the 

evolution of regional brain size.

The topic of regional brain size evolution has been framed in terms of the concerted 

evolutionary hypothesis (CEH) and mosaic evolutionary hypothesis (MEH). The question asked is: to 

what extent is natural selection free to shape the form of the mammalian brain? One argument proposes 

that brain regions evolve in concert due to constraints of neural development (Finlay & Darlington 

1995; Finlay et al 2001). The other argument says that this is not the case (Barton & Harvey 2000; de 

Winter & Oxnard 2001). An examination of the available evidence suggests that the mammalian brain 

is neither completely constrained by neural development nor completely free to evolve regions 

independently.

Beginning with the largest region, we see that the proportional size of the neocortex scales 

allometrically (power slope ~1.1) with absolute brain size (Passingham 1975; Deacon 1990). The 

implication of this relationship is that lineages that have evolved larger brains (e.g., primates) have 

evolved proportionally larger neocortices. If we move beyond the neocortex to the striatum, septum, 

diencephalon, midbrain, medulla, olfactory cortex, schizocortex, hippocampus, and cerebellum in 

primates, bats, and Eulipotyphla, a similar relationship holds: 96% of brain size variation is predicted 

by absolute brain size (Jerison 1989; Finlay & Darlington 1995). This effect has been explained in 

terms of epigenetic cascades: an increase or decrease in the size of one region leads to epigenetically 

correlated changes in the size of its targets or inputs (Finlay et al 1987). Since epigenetic cascades must 

occur relatively late in development, after axonal connections have formed and neurogenesis largely 
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ceased, they only influence cell death – although, this has been identified as a major determinant of 

overall cell number (see Chapter 1, Neurogenesis and cortical expansion). 

It has been proposed that evolutionary changes in absolute brain size are controlled by 

expansions and contractions of a highly conserved schedule of neurogenesis (Finlay & Darlington 

1995). Precursor cells are exhausted at different times during development, with posterior and ventral 

neurogenesis often beginning before anterior and dorsal neurogenesis (Finlay et al 2001). The 

scheduling of neurogenesis across mammalian brains seems to be highly conserved, with most changes 

affecting the lengths, rather than the order, of events. Moreover, brain regions that are observed to 

increase more rapidly with increasing brain size begin neurogenesis later than those observed to 

increase less rapidly with increasing brain size . That is, the later a region begins neurogenesis, the 

steeper its slope with brain size. This may be because regions developed earliest in brain ontogeny 

control essential functions (e.g., respiration) and are therefore safeguarded against disruptive changes. 

There is support for the CEH in preliminary studies of developmental scheduling in mammalian brains 

(Kornack & Rakic 1998; Clancy et al 2001), although even in the markedly small sample it is evident 

that neurogenetic schedules are not lengthened or contracted uniformly and that the rate of precursor 

cell division is not constant across species. However, neither of these departures necessarily falsifies 

the CEH. 

The MEH does not reject the presence of developmental constraints on evolutionary changes in 

brain size, but claims that the constraints are not overpowering. The observation of grade-shifts in the 

scaling relationships of neocortex and rest-of-brain in different taxonomic groups (Barton & Harvey 

2000) confounds the CEH, which only allows for minor differences between species. However, these 

grade-shifts are not statistically clean, and relatively few species exceed the minor differences predicted 

by concerted evolution. If we look at finer structures than the neocortex, the argument for mosaic 

evolution strengthens. The olfactory bulb, for example, plotted against medulla size shows that the 

olfactory bulb experienced a significant phylogenetic reduction in anthropoids (Stephan et al 1981), 

and that the olfactory cortex in anthropoids is larger than expected for a mammal with an anthropoid-

size olfactory bulb. Since a tight correlation between olfactory bulb and olfactory cortex holds for 

Eulipotyphla and Strepsirrhini, it is suggested that the constraint controlling the scaling relationship 

between olfactory bulb and olfactory cortex size broke down in anthropoid evolution (Streidter 2005). 

If we add the hippocampus into the mix and plot it against medulla, olfactory bulb, and olfactory cortex 

size, it becomes apparent that the olfactory cortex and hippocampus evolved independently in size from 
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the non-olfactory brain (Darlington et al 1999). Additional evidence can be found for mosaic evolution 

when we consider the superior colliculus (the major visual region in the midbrain), which is 

exceptionally large in ground squirrels (10 times larger than predicted by allometry) and exceptionally 

small in blind mole rats (38 times smaller than predicted by allometry) for their respective brain sizes. 

The behavioral correlate of the mole rat seems obvious, since these animals are virtually blind. The 

developmental or functional uncoupling of these regions, however, seems rare. The inferior colliculus 

(the major auditory region in the midbrain), for example, is only three times larger in echolocating bats 

than in non-echolocating bats. In fact, differences at the ordinal level do not  generally exceed three-

fold differences (Streidter 2005). The evidence, overall, implies that constraints on the evolution of 

brain regions are conserved, but that major behavioral adaptations can manipulate the size of particular 

structures. 

Comparative studies of connectivity and circuitry in the mammalian brain affirm many of the 

claims of concerted evolution. Neurons in developing brains often depend on trophic factors for 

survival. The trophic factors can originate in presynaptic cells or be target-derived (Linden 1994). The 

epigenetic population-matching (EPM) hypothesis proposes that neurons compete with one another for 

some trophic factor produced by their target region and, as a result of the competition, the number of 

projection neurons is matched to the number of available target cells (Katz & Lasek 1978). The sense 

of this hypothesis lies in the fact that genetic variation in the size of a certain region does not require 

matching mutations to adjust the size of the associated neuron pool. Several of the predictions made by 

the EPM hypothesis concerning the interconnectedness of brain structures have supporting evidence. 

For example, experimental removal of the retina during development leads to a dramatic size reduction 

of most retinal targets (Cullen & Kaiserman-Abramof 1976; Finlay et al 1986). More conspicuously, 

the retinal target regions in naturally blind species tend to be significantly smaller than in species with 

well-developed eyes (Cooper et al 1993a,b). The persistence of the suprachiasmatic nucleus (SCN) in 

blind mole rats is, in fact, consistent with EPM, since SCN neurons can survive without trophic support 

from the retina (Lehman et al 1995). While coordinated variations in the retinal system seem to have 

distinct epigenetic signatures (Cvekl & Mitton 2010), the mechanism of coordinated variation is not 

always clear. When a structural component in the trans-cerebellar loops (a series of parallel loops that 

pass through the cerebellar cortex and the inferior olive) becomes either hypo- or hypertrophied, for 

example, the other components follow suit (Voogd 2003). But without developmental data it is 

impossible to say that the population matching is epigenetically controlled. A further prediction of the 
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EPM hypothesis is the aforementioned epigenetic cascades (Wilczynski 1984), which propose that 

changes in the size of one structure will propagate throughout that structure's neural system. There is 

evidence in support of this prediction. The retina connects to the visual cortex indirectly via the LGN. 

Blind mole rats (and other naturally blind mammals) have abnormally small retinal targets, but they 

also have abnormally small visual cortices (Rakic et al 1991; Cooper et al 1993b; Dehay et al 1996b). 

Therefore, the reduction in the size of the visual cortex may be explained by an epigenetic cascade. 

However, this effect is not observed universally. Different species tend to elaborate pathways from a 

common source differently (Northcutt & Wulliman 1988). It seems most likely that epigenetic cascades 

operate successfully in linear circuits (e.g., the trans-cerebellar loops), but not in reticulate circuits, 

which is why mosaic evolution is possible. 

But can we make any inferences about behavior? The principle of proper mass (Jerison 1973 

2001) suggests that the importance of a function (e.g., spatial memory or olfaction) to a species is 

proportional to the amount of neural tissue the species devotes to the brain region controlling that 

function. This is difficult to test. The absolute size of the retina in mammals is directly related to the 

size of the visual receptive field of its neurons (since the neuronal population increases with the size of 

the retina), which is directly related to the ability of the retina to resolve small stimulus objects 

(Streidter 2005). But analogs of receptive fields are more elusive in most of the brain. If we simply 

consider that bigger is more important, then we must say that olfaction is more important to primates 

than it was to their earliest mammalian ancestors, since primates have larger olfactory cortices than the 

earliest mammals had (Laing et al 1991; Laska & Seibt 2002). But most would agree (e.g., Kielan-

Jaworowska 1983, 1984; Jerison 1990; Catania 2007; Sarko 2009) that the earliest mammals had 

olfaction-centric sensory systems and that olfaction is not principally important to the sensory 

experiences of primates (Gilad et al 2003). Therefore, the importance of olfaction decreased as the 

olfactory bulb increased. This is an untenable conclusion. Furthermore, the high proportion of non-

functional pseudogenes in the human olfactory receptor repertoire (Gilad et al 2000; Menashe et al 

2006) or the specialization of certain species to detect particular odors (Buck & Axel 1991; Zou et al 

2001; Leon & Johnson 2003) makes comparisons of the size of even specific structures across species 

problematic, as these comparisons assume that major molecular and cellular changes will necessarily 

be manifest in brain size variation.
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Primate brain

Increased diurnality, reduced olfaction, improved color-vision, and increasingly complex social 

behavior are major, and probably interrelated, trends of haplorrhine evolution. The first primates likely 

emerged ~85 million years ago (Soligo et al 2007; Martin et al 2007). They are posited to have been 

arboreal, nocturnal, and somewhere between squirrel- and hare-sized, not unlike some living 

strepsirrhine species (Heesey & Ross 2001). The front-facing, enclosed eye orbits and abbreviated 

snouts of haplorrhines, which are suggested to be adaptations favoring sense of sight over smell, are 

indicative of a switch to diurnality in haplorrhine evolution (Ross 1996). Further increased 

specialization for diurnal living is evident in the reduced olfactory receptor repertoire (Rouquier et al 

2000; Gilad et al 2003) and adaptation for trichromatic vision in catarrhines (Jacobs 1993; Dulai et al 

1999).  Body size and brain size are strikingly dissimilar in simians and prosimians, suggesting that 

increases in body and brain size have been positively selected for in simian evolution (Soligo 2006). 

While a comparison of tree shrews and prosimians shows a slight evolutionary jump in relative brain 

size in early primate evolution, perhaps due to a decrease in body size (Deacon 1997), brain size 

increases seem to have waited for body size increases in simian evolution. A cladistic analysis points to 

repeated selection for increased brain size in haplorrhines, catarrhines, hominoids, hominids, and 

hominins, although not without some evolutionary decreases in brain size along the way (e.g., 

marmosets) (Montgomery et al 2010). 

An early derived trait of the encephalized primate brain is disproportionate neocorticalization. A 

small strepsirrhine (Galago demidovii) and a large insectivore (Erinaceus europaeus) have brains that 

weigh roughly 3.4g. However, the proportion of brain size devoted to neocortex in the strepsirrhine is 

46% compared to 16% in the insectivore, and the neocortex-medulla ratio in the strepsirrhine is 9.3 

compared to 1.6 in the insectivore (Stephan et al 1981). Even though the proportional volume of the 

neocortex is expected to increase with increasing brain volume, primates appear to have deviated from 

the  mammalian values of this scaling relationship early on. The neocortex (grey and white matter) of 

the chimpanzee, for example, constitutes 76% of  total brain size and is fifty times larger than the 

medulla (Stephan et al 1981). 

Behavioral interpretations of primate neocorticalization have abounded, despite its elusive 

mechanistic provenance, the impossibility of assigning specific behaviors to the multifaceted region, 

and the implausibility of assuming that the entire neocortex was selected for a specific behavior. The 

primate brain and neocortex have been correlated with BMR, frugivory, longevity, and many 
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approximations for social intelligence (Clutton-Brock & Harvey 1980; Armstrong 1985; Dunbar 1998; 

Isler & van Schaik 2006 2009), none of which have been very useful in reconstructing the selection 

pressures behind primate brain evolution. However, by comparing brain structures and systems with 

specific empirical functions (and perhaps evidence of specific control over certain behaviors), our 

picture of primate brain evolution becomes clearer.

The visual system has been a center for considerable selection in primate brain evolution 

(Preuss 1999). The binocular-adapted front-facing eye orbits of early primates was likely associated 

with changes in how the retina projected to the superior colliculus. Primates, compared to most other 

mammals, have bilateral retinocollicular pathways, which improve depth perception by giving the 

superior colliculi and LGN access to information coming from both eyes (Kaas & Huerta 1988). The 

convergent evolution of bilateral retinocollicular pathways in primates and fruit-eating megabats 

(Pettigrew 1986; Rosa & Schmid 1994) suggests that this particular change in the visual system was 

selected for exploiting the fine-branch niche of an arboreal habitat.

There has also been positive selection on the primate cerebral motor system. Primates possess at 

least nine premotor areas, whereas most other mammals have, at most, four (Wu et al 2000). Several 

derived areas have been observed in the primate somatosensory cortex (Kaas 1983, 1988). The ventral 

premotor area, a derived feature of the primate motor system specialized for arm and mouth 

movements (Preuss et al 1996), has direct corticospinal projections, which are indicative of increased 

dexterity (Rizzolatti & Arbib 1998). Evolutionary changes in touch-sensitive fingertips and toes in 

primates likely had correlated changes in the somatosensory cortex (Manger et al 1996). The 

interconnectedness of the motor system, spinal cord, and somatosensory cortex together with the visual 

system form a hypothetical movement-control center, selection on which would have been 

advantageous to the reliance of early primates on hand-eye coordination in feeding (Soligo & Martin 

2006) and exploiting the fine-branch niche (Kaas 2008; Shapiro & Young 2010) of an arboreal habitat.

Comparative analyses of the primate prefrontal cortex cannot make such robust claims. Pairing 

adaptive behavior (e.g., balancing on tree-branches) with cerebral adaptations for decision making, 

which is the generalized function of the prefrontal cortex (Krawczyk 2002), can be difficult. Perhaps 

for this reason, the prefrontal cortex has commanded the attention of comparative neurobiologists for 

decades. The primate prefrontal cortex is divided into three major regions. The anterior cingulate 

cortex, which mostly processes information about consciousness, affective state, and expression, and 

influences skeletomotor and autonomic activity (Devinsky et al 1995; Luu & Posner 2003; Botvinick 
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et al 2004), and the orbital prefrontal region, which is involved in sensory integration and valuation of 

rewarding external stimuli (Tremblay & Schultz 1999; Schoenbaum & Setlow 2001), constitute the 

emotional aspects of decision-making and are conserved in mammals (Damasio 1994; Dias et al 1996; 

Allman et al 2001; Streidter 2005). The lateral prefrontal cortex (LPC), however, whose neurons 

respond mostly to the physical attributes (e.g., spatial location) of external stimuli (Wallis & Miller 

2003), is apomorphic in primates (Preuss 1995a; Elston et al 2005). Most interpretations of the LPC 

have implicated rational decision-making, such as allowing primates to consider alternative scenarios, 

which is often used as a proxy for intelligence (Owen et al 1999). The LPC is considered a definitive 

feature of primate brain evolution, and even a major component of what makes human intelligence 

unique (Tanji & Hoshi 2008). However, the usefulness of this added prefrontal region in early primates 

is difficult to categorize, making the identification of selection pressures on its inception, compared to 

adaptations described in the visual and motor systems, considerably speculative (see Sherwood et al 

(2008) for a review of hominoid cognition). 

A general trend has been observed in primates to possess more cortical areas than other 

mammals (Felleman & Van Essen 1991; Preuss & Goldman-Rakic 1991) and to separate systems of 

long corticocortical connections into functional networks (Preuss 2001). Many higher-order association 

regions (e.g., posterior parietal and inferotemporal cortices, in addition to the LPC) may be unique to 

the primate brain (Allman 1977; Kaas 1987; Preuss 1995b; Preuss & Kaas 1999). Furthermore, primary 

sensory areas in primates are connected only to areas of the same sensory modality, which is not the 

case in rodents (Vogt & Miller  1983; Miller & Vogt 1984; Sukekawa 1988; Reep et al 1990; Paperna 

& Malach 1991; van Eden et al 1992; Conde et al 1995). It may be that larger-brained mammals 

generally possess more cortical areas than smaller-brained mammals (Kaas 1987) and that the 

functional segregation of networks is a reflection of constraints on connectivity (Krubitzer 2009). 

Nonetheless, the need for the proliferation of cortical areas in primates may itself be indicative of an 

increasing specialization of cerebral functions in primate evolution. 

Considering humans, whose ratio of neocortical gray matter to medulla size is twice what it is in 

chimpanzees, we expect to find an arsenal of new cortical regions. This does not seem to be the case 

(perhaps due in part to the limited amount of research done on identifying homologous and non-

homologous regions in humans and other primates). Intuitively, the primary contenders for derived 

human areas are Broca's and Wernicke's, which have been classified as two major language areas in the 

human  brain. But, areas 44 and 45, which collectively comprise Broca's area in humans, have been 
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identified in other primates (Preuss & Golman-Rakic 1991c; Rizzolatti & Arbib 1998; Petrides & 

Pandya 1999; Wu et al 2000; Petrides & Pandya 2001; Schenker et al 2010). Area 45 has been 

described in macaques as having clusters of large, deeply stained pyramidal cells in the lower part of 

layer III and a well-developed layer IV (Petrides & Pandya 2001), which is qualitatively almost 

indistinguishable from what is observed in humans. A study of hominoids (including humans) and Old 

and New World monkeys showed that humans have not evolved differentially higher requirements of 

metabolic support in area 44 (Sherwood et al 2006). There is further evidence that Tpt, a component of 

Wernicke's area in humans, is homologous in non-human primates (Preuss & Goldman-Rakic 1991a; 

Pandya 1995) and even shows human-like asymmetry in association with area 45 in chimpanzees 

(Proctor et al 2010). In fact, population-level left hemisphere-dominant asymmetry of the planum 

temporale, a highly lateralized structure involved with language (Zheng 2009), can be traced to the 

catarrhine common ancestor (Gannon et al 1998, 2008; Hopkins et al 1998; Cantalupo & Hopkins 

2001). While it is unlikely that all neocortical areas are conserved between humans and their closest 

relatives – e.g., parts of the LPC and the inferior parietal lobe are likely derived in humans (Karnath 

2001) –, there is no evidence for an outburst of novelty (addition or segregation) in human evolution. It 

may be more informative to look at how homologous areas in humans differ, qualitatively and 

quantitatively, from their ape and monkey relatives. 

The frontal lobe in primates increases proportionally with increasing brain size (Bush & Allman 

2004). Humans have a predictably large frontal cortex that does not deviate from allometric predictions 

(Semendeferi 2002). However, if we look at the divisions of the frontal lobe separately, it seems that 

the LPC (especially area 10), compared to other regions of the frontal lobe, became disproportionately 

large in humans (Semendeferi et al 1998, 2001). There is further evidence that the LPC did not become 

independently encephalized; several other regions that form a circuit with the LPC also became 

selectively enlarged in human brains. Outside the neocortex, the LPC mainly interacts with the medial 

dorsal nucleus and the pulvinar, two cell groups in the dorsal thalamus that are disproportionately large 

in humans (Streidter 2005). Observed embryogenetic changes related to neurons in the pulvinar 

(Letinic & Raki 2001) suggest that pulvinar development was radically altered in human evolution 

(although, it is not known whether this alteration took place in hominin or in hominoid evolution). 

Pulvinar hypertrophy primarily implicates the dorsal pulvinar, which has strong reciprocal connections 

with the LPC (Romanski et al 1997; Gutierrez et al 2000). There are many hypotheses, some of which I 

have already described, for functional-behavioral correlates of an encephalized LPC in humans (e.g., 
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Rizzolatti & Arbib 1998; Duncan & Owen 2000; Wise & Murray 2000; Miller & Cohen 2001; Wallis 

et al 2001; Gray et al 2002; Aron et al 2004; Streidter 2005; De Pisapia et al 2007; Lee et al 2007; 

Sakagami & Watanabe 2007; Jung et al 2008; Tanji & Hoshi 2008), not one of which is grounded in 

enough evidence to draw out a consensus.  

Two other regions of notable encephalization in humans include the temporal lobe, which is 

larger than expected for a human-brain sized ape (Rilling & Seligman 2002), and the parietal lobe, 

which includes the potentially novel areas 39 and 40 (Preuss & Golman-Rakic 1991a). Expansion in 

the temporal lobe seems to have been mostly dorsal, in areas associated with processing speech (Farah 

et al 1999; Streidter 2005). Across primates, however, the temporal lobe is observed to proportionally 

decrease with increasing brain size (30% in squirrel monkeys compared to 16% in humans) and the 

scaling relationship of brain size and parietal lobe size is unknown. 

There are at least three regions of the human brain which have decreased in size or complexity. 

The olfactory bulb in humans compared to non-human primates is smaller than expected and simpler in 

its structural details compared to other primates (Stephan & Andy 1970; Rouquier et al 2000; Streidter 

2005). The dorsal cochlear nucleus (DCN) in humans is virtually un-laminated compared to the highly 

laminated DCN observed in strepsirrhines (Moore 1980). In fact, from strepsirrhines to hominoids the 

granule cell layers of the DCN become increasingly thin and superficial, until they are virtually absent 

in humans. This is possibly an effect of increasing brain size or less mobile pinnae in larger primates, 

but there is not enough evidence to support either of these claims. And perhaps the most notable 

reduction in the human brain is the relatively small primary visual cortex (V1), which occupies only 

2% of the neocortex in humans compared to 5% in chimpanzees (Stephan et al 1981). Since V1 size 

scales predictably with neocortex size in primates, it is easy to see that the human V1 is smaller than 

expected for a human brain-sized primate. However, considering that human body size scales tightly 

with V1, as well as orbital size (Passingham 1973), it seems unlikely that V1 was reduced during 

human brain evolution, but that it did not grow at pace with other neocortical regions. Histological 

studies suggest that V1 in humans is distinguished from V1 in apes and monkeys in the way it 

segregates information arising from the magnocellular and parvocellular layers of the LGN (Preuss et  

al 1999). Imaging studies point to structural and functional differences between humans and other 

primates in higher-order visual cortical areas (Tootell & Taylor 1995; Tootell et al 1997; Preuss 2001). 

So, despite its volumetric stasis, the visual cortex has been a site of repeated selection in human brain 

evolution (see Chapter 5, Evolution).
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Increasing brain size means increasing axonal length and decreasing proportional connectivity, 

which both have consequences for transmitting information and synchronizing neural activity in distant 

cortical regions. Encephalized primate brains have compensated for these consequences with at least 

two fundamental alterations in network design. Firstly, in haplorrhines, the somatosensory component 

of the dorsal thalamus projects uniquely to the primary somatosensory cortex, whereas in strepsirrhines 

and many non-primates it projects to multiple areas (Kaas & Preuss 2003). Likewise, the visual cortex 

in macaques is divisible into ventral and cortical streams and is (nearly) the exclusive projection center 

for the LGN, whereas a general pattern of diverging and converging visual cortical and LGN 

connections is observed in cats (Young 1992; Scannell & Young 1993). The functionality of such 

rewiring is cost-efficiency: serial thalamocortical and intracortical circuits, designed in a hierarchical 

system, minimize wiring costs by making each junction in the circuit responsible for processing the 

output from the prior junction (Wen & Chklovskii 2005; Chen et al 2006; Jehee & Murre 2008). 

Secondly, larger primate brains have evolved less densely connected and more functionally 

independent cerebral hemispheres, as evidenced by the disproportional shrinking of the corpus 

callosum as an effect of increasing neocortical size (Rilling & Insel 1999a; Olivares et al 2000; 

Hopkins et al 2008). Human brains are paragons of hemispheric asymmetry (Gannon et al 1998; 

Buxhoeveden & Casanova 2000; Gilissen 2001; Rogers & Andrews 2002). The effect of this 

disconnectedness, it seems most likely, has been to allow each hemisphere to specialize in certain tasks 

(Levy 1969; Doyle et al 1974; Davidson 1978; Rogers 2000; Sainburg 2005; Vallortigara & Rogers 

2005). 

An unfortunate effect of the human brain's solutions to the design problems of encephalization 

include unparalleled vulnerability to damage. Serial circuits, for example, compared to the parallel 

circuits observed in most mammals, tend to have information bottlenecks, the deletion or corruption of 

which is systemically deleterious (Rodman & Moore 1997; Preuss & Kaas 1999; Heitger et al 2004). 

Increased asymmetry in humans, too, has increased our vulnerability to focal brain damage compared 

to other primates (Heywood & Cowey 1992; Karnath 2001). Obviously, these costs of encephalization 

were not enough to overcome the selection pressures for encephalization in humans. 

Carnivore brain

Carnivores show great diversity in ecology, sociality, life-history, and morphology (Wesley-

Hunt 2005). They have a well-resolved phylogeny and an extensively sampled fossil record (Flynn et  



36

al 2005; Wesley-Hunt & Flynn 2005; Finarelli 2008a). Comparative studies of the carnivore brain have 

been almost exclusively on brain volume. Reconstructions of ancestral caniform species suggest that all 

major caniform clades have experienced encephalization, and that encephalization occurred in parallel 

across caniform clades (Finarelli & Flynn 2006). However, neither ecology, sociality, life-history, nor 

morphology have been able to explain that encephalization. Whereas basal metabolic rate (BMR) 

appears to be highly and positively correlated with brain size in most eutherian mammals (Martin 1981; 

Isler & van Schaik 2006), BMR is not correlated with brain size in carnivores (Finarelli 2009). 

Whereas support for the maternal energy hypothesis (Martin 1981, 1996) exists in correlations between 

reproductive strategies (e.g., gestation length and weaning mass) and brain size in most eutherian 

mammals, reproductive strategies are not correlated with brain size in carnivores (Finarelli & Flynn 

2009) – although more encephalized carnivore species tend to have fewer and larger offspring, two life-

history traits that accompany longer gestation length, compared to less encephalized carnivore species 

(Finarellli 2009; Finarelli & Flynn 2009). While it appears at first that social group size impacts brain 

size in carnivores (Perez-Barberia et al 2007), closer inspection shows that the family Canidae, which 

is composed of mostly highly encephalized and social species, imposes a disproportionate bias on the 

dataset. Instead, carnivore species are a riot of encephalization and sociality: musteloids and ursids, 

which show comparable patterns of encephalization to canids, are non-social and solitary, respectively; 

and the families hyaenidae and herpestidae possess both social and non-social species with no 

associated affects on encephalization (Finarelli & Flynn 2009). Orbit orientation has been linked to 

food-gathering behavior and locomotion in mammals (e.g., Cartmill 1972, 1974; Ross 1995; Noble et  

al 2000; Heesy 2005). The orbital convergence angle, in particular, has been linked to stereoscopic 

vision and depth perception, as well as, in primates, arboreality and nocturnal visual predation 

(Cartmill 1970, 1972). No such pattern emerges in carnivores (Finarelli & Goswami 2009). This should 

be expected, however, since the carnivore skull has been shown to be characterized by multiple 

phenotypic modules, which show relatively high within-module and low among-module correlations 

(Goswami 2006a,b) that permit the independent evolution of certain modules without affecting the 

functional relationship among modules (Finarelli & Goswami 2009). This is much less the case in 

primates (Goswami & Polly 2010). If any conclusions can be drawn from this collection of studies, it is 

that patterns of encephalization in Carnivora are generally restricted to phylogenetic families.
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CHAPTER 4
METHODOLOGY (BRAIN DATA)

In order to investigate the number of cells in a region of interest (ROI), it is necessary to slice 

the tissue of the ROI into sections and then inspect the sections. This method is complicated by the fact 

that slicing tissue into sections results in slicing individual cells, and counting cell fragments as 

complete cells introduces bias. Design-based stereology has developed a method to correct for such a 

bias.

Design-based stereology uses probes and sampling schemes defined a priori to ensure 

independence from assumptions about the shape, size, spatial orientation, and spatial distribution of the 

particles under investigation. The method can be used to analyze global characteristics that can be 

expressed as absolute values (e.g., the volume of the granule cell layer of the dentate gyrus) or relative 

values (e.g., the fraction of Betz cells in layer V of M1) and local characteristics (e.g., the volume of a 

Betz cell in M1). This study only analyzed global characteristics. For overviews of design-based 

stereology, see Cruz-Orive & Weibel (1990), (Gundersen 1992), Mayhew & Gundersen (1996), 

Howard & Reed (1998), and Schmitz & Hof (2005); for reviews of the applications of design-based 

stereology, see Gundersen et al (1988), Mayhew (1992), and West (1993, 1999 2002); for detailed 

overviews of the mathematical and statistical foundations of design-based stereology, see Jensen (1998) 

and Russ & Dehoff (2000).

 Fractionator principle

In systematic sampling, the sampling interval is defined as the quotient of the population size 

and the sample size. Systematic random sampling (SRS) applies to this method the principle of simple 

random sampling, which gives every particle in a ROI equal probability of being sampled. Thus, 

particles of a region will be sampled at regular intervals from a random starting point. The fractionator 

principle, an application of SRS, can be written for the ith estimate of n sample as

                                                         X i=
x i

f
=

x i

1/ n
=n xi           (1)

and for the mean of all estimates as

X = 1
n


i=1

n

n xi=
i=1

n

x i ,    (2)
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where x is the value measured from the sample (e.g., number of neurons counted), f is the fraction 

sampled, and ̣X is the quantity of interest (e.g., population of neurons in V1). So long as x is unbiased, 

X is also unbiased. The value of f is determined by the worker based on a balance between the accuracy 

needed for the estimate and the amount of work that can be done. The value for f that best suits this 

balance is usually determined through a pilot study with the object and quantity of interest. Since 

design-based stereology is unbiased, the larger the value of f (i.e., the closer the worker is to 

exhaustively sampling the quantity of interest), the more X converges on the true quantity. This is clear 

from (2), which shows that the average of the estimates made with the fractionator is the true result. 

Optical fractionator 

The optical fractionator method estimates the total number of cells in a ROI from the number of 

cells sampled. The fractionator principle is used to select a series of SRS sections through the entire 

ROI. A randomly positioned, systematically spaced lattice is superimposed on each tissue section of the 

ROI. Unbiased virtual counting spaces are positioned at the cross-sections of the lattice that intersect 

with the ROI. A virtual cube (the disector), with three exclusion sides and three acceptance sides, is 

superimposed onto each counting space (Fig. 4a). The cube is represented to the worker in a 2-D 

counting frame on a computer screen (Fig. 4b), which is moved along the z-axis of the section tissue 

using a microcator, an electronic device that measures the vertical displacement of the microscope 

stage, and along the x,y-axis using a computer-controlled stepping motor, which directs the counting 

frame to each disector site. Particles are counted in the counting frame according to unbiased counting 

rules (Fig. 4a,b; also see West 1991; Keuker et al 2001). Since the size of the ROI is implicitly 

determined by the optical fractionator, the particle count is independent of shrinkage or swelling of the 

tissue.

The total particle count is determined using three sampling fractions. The section sampling 

fraction (ssf) is the proportion of sections of the entire, serially sectioned ROI that are sampled (Fig. 

5a). The area sampling fraction (asf) is the proportion of the sectional area that is investigated within 

the sampled fractions, calculated as the ratio between the area of the counting frames and the x,y-

distance between the counting frames (Fig. 5b). The thickness sampling fraction (tsf) is the cross-

sectional area of the sampled sections, calculated as the ratio of the disector height and the total section 

thickness (Fig 5c). The total particle count (N) is then estimated as the product of the reciprocals of the 

fractions, such that
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(a) (b)

Figure 4. (a) The 3D (x,y,z) disector has five rejection planes (defined by redlines) and three acceptance 
planes(defined by green lines). (b) The rejection (red) and acceptance (green) regions of the counting 
frame constitute a 2D (x,y) representation of the disector at each z-position of the tissue. The rejection and 
acceptance lines together span the entirety of the microscopic field. The space between the rejection and 
acceptance lines (i.e., the counting frame) is asymmetrical. A particle is counted if  the user-defined 
characteristic point of the particle comes into focus (i) within the counting frame without touching a 
rejection line or (ii) touching an acceptance line but not a rejection line. Using the cell body and the 
nucleolus as the user-defined characteristic points for glia and neurons, respectively, the arrows (glia) and 
arrowheads (neurons) indicate which cells are counted in the specific z-position of the tissue. 

(c)
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N=Q× 1
tsf

× 1
asf

× 1
ssf , (3)

where Q is the number of particles counted. The most suitable values for the sampling fractions can be 

determined in a pilot study with each individual. On average, a worker should sample 20 sections and 

expect to count 1-3 particles per disector (Gundersen et al 1987; Keuker et al 2001). In order to avoid 

potential bias from the partial loss of particles at the upper or lower surface of the sections (so-called 

(a)

(c)

(b)

Figure 5. The optical fractionator is applied in three stages. (a)The object is embedded and exhaustively 
sectioned; a known fraction, the section sampling fraction (ssf), of the sections is then sampled using 
systematic random sampling. (b)A lattice of known x and y is randomly positioned over the ROI; at each 
transect of the ROI and the lattice, a counting frame is placed; since the area of the counting frame and the 
x,y-distance between the counting frames are known, the x,y-space covered by each counting frame can be 
calculated as the area sampling fraction (asf). (c)The height (h) of the disector is user-defined and the 
thickness (t) of each section of tissue is estimated using the microcator at the first and final site of each 
tissue section; the ratio of these quantities is the thickness sampling fraction (tsf). The ssf, asf, and tsf are 
then used to estimate the total number of particles in a ROI. Adapted from Schmitz & Hof (2005).
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lost caps) or from uneven surfaces of the sections, it is necessary to introduce a guard zone at the upper 

and lower surfaces of the sections (Fig. 5c). That is, approximately 10% of the section thickness (and 

minimally 4µm) is not investigated at the top and bottom of each section (Andersen & Gundersen 

1999; Schmitz & Hof 2005). It is also necessary (Dorph-Petersen et al 2001), in order to correct for 

potential non-uniform tissue deformation along the z-axis, to calculate the tsf using a Q-weighted mean 

section thickness (tQ), such that 

tQ=
ti Qi
Qi

, (4)

where ti is the section thickness for the ith counting frame with a disector count of Qi. 

Cavalieri volume estimtaor

The volume of a ROI can be estimated free of systematic error using the profile areas of the 

sliced sections of the ROI. The profile areas of the sections through the ROI are traced on a virtual 

image of the ROI represented on a computer screen (Fig 6). A systematically spaced and randomly 

positioned point-grid is superimposed on the virtual profile. The volume of the ROI can be estimated as

V = t
ssf

×a p 
i=1

n
Pi ,     (5)

where t is the mean section thickness, Pi is the number of points landing within the object transect on 

the ith section, and ap is the square of the distance between points on the grid. Therefore, the point-grid 

on a series of sections is a 3-D grid of points in space, where each point is assigned a volume element 

equal to ap t. 

The Cavalieri method is the most commonly used stereological method for estimating volume 

(Gundersen & Jensen 1987; Howard & Reed 1998). Fewer than ten sections per structure is an 

adequate sample for the Cavalieri estimator (Holm & West 1994), so long as the sampled sections are 

regularly spaced, the initial section is randomly selected, and the coefficient of error is not excessive 

(see below).

Coefficient of Error

The accuracy of an estimate obtained from design-based stereology is measured by the 

coefficient of error (CE), which is the quotient of the standard deviation and the mean (Gundersen & 
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Jensen 1987; Gundersen et al 1999; Slomianka & West 2005). Since the CE represents variation due to 

methodological uncertainty, it should contribute less than the biological coefficient of variation (BCV) 

to the total coefficient of variation (CV), where CV2 = CE2 + BCV2 (West et al 1991). This ensures that 

the observed group variance is the result of biological variation rather than bias. The simplest estimate 

of CE is the Schmitz estimator, which calculates the CE as the reciprocal value of the square-root of the 

number of particles counted (Schmitz & Hof 2000).There are, in fact, a range of ways to calculate the 

CE (see Slomianka & West 2005), but the estimate that best fits the observed CE for the optical 

fractionator is the Gundersen-Jensen method (Gundersen et al 1999): 

CE Q = [3A−S 2−4BC ]/S 2

Qi
, (6)

where

A=
i=1

n
Qi

2 , (7)

B=
i=1

n−1
Q i×Qi1 ,    (8)

C= 
i=1

n−2
Q i×Qi2 ,    (9)

and S2 is the variance introduced by local errors for either point counting or disector sampling, so that

S2=0.0724×shape factor×n×Q ,          (10)

where the shape factor is calculated as the average length of the boundaries of the structure divided by 

the square-root of its average area in the sections (Gundersen & Jensen 1987). The value of α, which 

can range from 1/12 to 1/240, is determined by the smoothness distribution, such that local variance 

becomes important as a function of the variance of its surroundings. The definition of smoothness here, 

however, is more precisely 'observed or perceived smoothness', as most biological structures will have 

smooth distributions. Therefore, general practice ascribes a smoothness factor of 0 (α=1/12) for section 

sampling intervals less than 8, and a smoothness factor of 1 (α=1/240) for section sampling intervals 

greater than 8 (Slomianka & West 2005).
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Similarly, the CE for the Cavalieri method is proportional to the square-root of the variance and 

complexity (i.e., shape factor) of the  of the total area under investigation. Using the following sums,

a=
i=1

n
P i

2 ,            (11)

b=
i=1

n−1
P i×P i1 , (12)

and

c= 
i=1

n−2
P i×Pi2 , (13)

then the CE is predicted to be

CE  V =3a−CE  P −4bc ,      (14)

where the contribution of the point counting is

CE  P=0.0724 B
a p

n 
i=1

n
P
i

,             (15)

and the overall CE is

CE=CE  V CE  P 


i=1

n
P i

,         (16)

where α is the smoothness distribution as above and B is the mean boundary length (Cruz-Orive 1993)

The overall CE for both the optical fractionator method and Cavalieri method should not exceed 

0.10 in order for the estimate to have statistical significance (Sahin et al 2003; Schmitz & Hof 2005).

Materials

The brain specimens used in this study were stained with Nissl, sliced coronally, horizontally, or 

sagitally, and with sections ranging in thickness from 25-80µm. The left hemispheres of adult male and 

female brains were sampled. When available, both the left and right hemispheres were sampled for 

cerebellar data.
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Research locations 

All sections were 

investigated on-site at the 

National Museum of Health and 

Medicine (Washington, DC), the 

Laboratory of Neuromorphology 

at Mount Sinai Hospital (New 

York, NY), the Department of 

Evolutionary Neuroanatomy at 

George Washington University 

(Washington, DC), and the 

Pediatric Storage Disorders Lab 

at King's College London 

(London, UK). Brain specimens 

were donated for study after 

immersion fixation in 10% 

buffered formalin or 4% 

paraformaldehyde. 

Slicing/Staining 

Although most specimens were sliced and stained in the context of prior investigations, several 

brains or brain regions were sliced and stained personally. In those cases, the following procedure was 

used. Brains were frozen in 25% sucrose, then sliced at 40µm intervals using a freezing microtome. 

The sections were immediately mounted on Chrome Alum-coated slides and air-dried overnight (Fig 

7). The sections were stained in Cresyl fast violet solution (0.5% aq) at 600C for 30 minutes, then 

rinsed in two changes of deionized water. The sections were processed in an ascending series of 8 

graded alcohol and xylene solutions: 70% IMS (5 minutes), 80% IMS (2 minutes), 90% IMS (2 

minutes), 95% IMS (2 minutes), 100% IMS (2 minutes), 100% IMS (2 minutes), 50% xylene in IMS (2 

mintutes), and xylene (2 minutes). Sections were then passed through descending grades of alcohol and 

then again through ascending grades of alcohol until the background of the sections were sufficiently 

Figure 6. A virtual profile of the ROI is projected onto a 
computer screen, where it is manually outlined. A point-grid of 
known spacing is randomly positioned over the ROI. Points 
falling within the outlined area are used to estimate the volume 
of the ROI according to Cavalieri's method.
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clear. Each section was left in a xylene solution for an hour before being mounted with a glass cover-

slip and a xylene-based mountant (DPX). 

Stereology equipment 

Zeiss (Oberkochen, Germany) Axioplan 2 photomicroscope equipped with a Ludl (Hawthorne, 

NY) XY motorized stage, Heidenhain (Plymouth, MN) z-axis encoder, an Optronics (East Muskogee, 

OK) Microfire color video camera, a Dell (Round Rock, TX) PC workstation, and StereoInvestigator 

software (MicroBrightfield, Wiliston, VT).

Specimens 

One-hundred-and-two individuals were sampled from 74 species (Table 1, Fig. 8). When the 

taxonomic groups needed to constitute independent samples (e.g., ANOVAs), they were separated into 

Carnivora, Shrew-to-Whale, and Primates. Shrew-to-Whale included all non-carnivore/non-primate 

species sampled in this study. All species sampled were analyzed collectively for generalizing results to 

the class Mammalia. The species were separated into placental groups for certain analyses (Table 2). 

Artifactual Error

As many of the specimens were collected in the context of other investigations, some of which 

are expected to have been opportunistic, it was impossible to control for idiosyncratic artifacts related 

to discrepancies in fixation length and postmortem delay. The recorded brain weights in my sample, 

nonetheless, do not show significant deviations from species-typical average fresh weights. 

Furthermore, comparable error from tissue shrinkage is assumed to be contained in both independent 

and dependent axes for each data point in bivariate plots, so error should only be expected to affect the 

elevation of regressions, but should not be expected to have a significant influence on scaling 

exponents and residuals. Analysis using the ratio of glial cells to neurons, as well, should be assumed to 

contain equal shrinkage-based error in the numerator and denominator, and thus error may be factored 

out (see Sherwood et al 2007).

The effect of phylogeny on scaling

The congruence of scaling relationship for species mean data and independent contrasts 

indicates that contemporary species values represent scaling rules that apply regardless of phylogenetic 
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relatedness. Scaling relationships that show corresponding values for species mean data and 

independent contrasts, therefore, may be interpreted as being more strongly constrained or determined 

by scaling rules deep in the phylogeny rather than by effects of adaptation or inertia at terminal taxa. In 

this study, when independent contrast slopes were contained within the 95% confidence intervals of 

slopes calculated for species mean data I accepted it as indicative that the scaling relationship observed 

in contemporary species occurred repeatedly throughout multiple nodes in the phylogenetic tree and, 

therefore, represented functional constraints in the design of the region of interest.

Data analysis

Neuronal and glial cell densities, volumetric estimates of the granule cell and molecular layers 

of the dentate gyrus, and volumetric estimates of the granule cell layer of the cerebellum were plotted 

against brain mass, body mass, EQ, gestation length, and neocortical volume. When measurements of 

physiological variables were not available for the individuals studied, species mean data were taken 

Figure 7. After the tissue was sectioned and stained, it was mounted serially onto slides for 
inspection under the microscope.
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Taxonomic group Subgroup Species Taxonomic group Subgroup Species
Primates

Shrew-to-Whale (SW)

Pan troglodytes (5)

Gorilla gorilla (2)

*The number of individuals sampled for each species is listed. Where no number is listed, only one individual was sampled.

Table 1: List of species by taxonomic classification*

Strepsirrhini Galago senegalensis+ Carnivora Caniformia Mustela nigripes+

Nycticebus coucang Neovison neovison
Lemur catta+ Mephitis mephitis
Eulemur mongoz Taxidea taxus
Microcebus murinus Procyon cancrivorus
Cheirogaleus medius Procyon lotor+

Tarsiidae Tarsius bancanus Nasua nasua
Tarsius syrichta+ Bassaricyon gabbii+

Haplorrhini Callithrix geoffroyi Potos flavus
Leontopithecus rosalia Ailurus fulgens
Saguinus oedipus Zalophus californianus
Cebus capucinus Callorhinus ursinus+

Saimiri sciureus+ Phoca vitulina
Aotus trivirgatus Ursus maritimus+

Callicebus moloch Feliformia Canis lupus familiaris
Pithecia pithecia Canis latrans+

Alouatta caraya+ Vulpes vulpes
Alouatta palliata Panthera pardus+

Ateles ater Felis catus
Macaca fascicularis (2)+ Puma concolor
Macaca mulatta (2) Crocuta crocuta+

Macaca maura (5) Cynictis penicillata
Cercocebus torquatus Dasyprocta leporina+

Mandrillus sphinx Lepus americanus+

Papio anubis (2) Cynocephalus volans+

Cercopithecus mitis Tupaia glis+

Cercopithecus nictitans Stenella coeruleoalba+

Erythrocebus patas (2) Tursiops truncatus+

Colobus angolensis+ Megaptera novaeangliae+

Trachypithecus francoisi Sus scrofa+

Hominoidea Pongo pygmaeus (2)+ Rhinoceros unicornis+

Pan paniscus Manis gigantea+

Scalopus aquaticus+

Homo sapiens (6)+ Erinaceus europaeus+

Sorex araneus+

Hylobates muelleri+ Trichechus manatus+

Symphalangus syndactylus

+Species included in All Species (AS) group
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Pan troglodytes
Homo sapiens
Gorilla gorilla

Table 2: Lis t of species by placental characterization

Haemochorial Endotheliochorial Epitheliochorial
Callithrix geoffroyi Tupaia glis Lemur catta
Leontopithecus rosalia Felis catus Eulemur mongoz
Saguinus oedipus Panthera pardus Microcebus murinus
Cebus capucinus Puma concolor Cheirogaleus medius
Saimiri sciureus Cynictis penicillata Galago senegalensis

Aotus trivirgatus Crocuta crocuta Nycticebus coucang
Callicebus moloch Canis lupus familiaris Manis gigantea
Pithecia pithecia Canis latrans Sus scrofa
Alouatta caraya Vulpes vulpes Rhinoceros unicornis
Alouatta palliata Ailurus fulgens Hexaprotodon liberiensis
Ateles ater Ursus maritimus Stenella coeruleoalba
Macaca fascicularis Mephitis mephitis Tursiops truncatus
Macaca mulatta Bassaricyon gabbii Megaptera novaeangliae
Macaca maura Mustela nigripes
Cercocebus torquatus Taxidea taxus
Mandrillus sphinx Neovison neovison
Papio anubis Procyon cancrivorus
Cercopithecus mitis Procyon lotor
Cercopithecus nictitans Potos flavus
Erythrocebus patas Nasua nasua
Colobus angolensis Phoca vitulina
Trachypithecus francoisi Callorhinus ursinus
Pongo pygmaeus Zalophus californianus
Pan paniscus Trichechus manatus

Cynocephalus volans

Hylobates muelleri
Symphalangus syndactylus
Tarsius bancanus
Tarsius syrichta
Dasyprocta leporina
Erinaceus europaeus
Scalopus aquaticus
Sorex araneus
Lepus americanus
Crocuta crocuta
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Figure 9. Independent contrasts were calculated using this pruned phylogeny, adapted 
from Bininda-Emonds et al (2007). 
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from the literature (Ross & Kirk 2007; de Sousa et al 2009 2010). Data on reproductive traits were 

taken from the literature (see Chapter 8, Methodology B: Placental Data). Scaling exponents were 

determined by reduced major axis (RMA) and least-squares (LS) line-fitting based on log-transformed 

data. To determine whether observed cellular densities and volumes in humans deviated significantly 

from allometric expectations based on  non-human data, LS prediction equations and prediction 

intervals were generated using non-human species mean data and independent contrasts. The 

percentage differences between observed and predicted values were calculated as ((observed – 

predicted)/predicted) x 100). 

Independent contrasts were calculated using the PDAP:PDTREE module of Mesquite (v2.72) 

from a pruned mammalian phylogeny from Bininda-Emonds et al (2007). Branch lengths were 

transformed according to Pagel (1992), as all the tips were contemporaneous. Prediction equations and 

intervals based on independent contrasts were generated by pruning humans from the tree, rerooting the 

tree at the last common ancestor of humans and mammals, and then computing LS  regressions and 

prediction intervals for independent contrasts (Garland & Ives 2000). Human predictions were 

generated from non-human data based on LS regression, rather than RMA line-fitting, because the LS 

model was designed to generate predictions for y when x is known and produces residuals uncorrelated 

with the independent variables (Sokal & Rohlf 1995).

Recursive partitioning based on multiple regression analyses (see Breiman et al 1989; Clark & 

Pregibon 1992; see Hess et al 1999), stepwise AIC multiple regression (Yamashita 2007), and the 

relative importance metrics lmg, pmvd, first, and last (Chevan & Sutherland 1991; Johnson & Lebreton 

2004; Feldman 2005; Gromping 2006, 2007) were used to isolate the best predictor variables for and 

determine the proportional contributions of regressors to cellular densities and volumes. 

Recursive trees were built by first selecting the single variable which best split the data into two 

groups by administering an ANOVA. The same process was applied to split groups into subgroups and 

repeated recursively until no improvement could be made on the model. In regression trees using 

ANOVAs at each node, the splitting criterion that maximized the between-groups sum of squares (i.e., 

gave the best split) was equal to SST – (SSR + SSL), where 

SST= y i−y 2 (17)

and SSR and SSL are the sums of squares for the left and right branches, respectively. Therefore, 

recursive partitioning identified which input variable best split the data for the output variable at each 
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node.   

 Each relative importance metric contributed something unique to understanding the allocation 

of variance in the quantity of interest among the variables (i.e., regressors). The metric first compared 

what each regressor alone was able to explain by comparing the coefficient of determination (R2) 

values from p regression models with one regressor only. The metric last compared what each regressor 

was able to explain in addition to the other regressors, so that each regressor was ascribed the increase 

in R2 when including the regressor being tested as the last of the regressors. Contributions were not 

made to sum to R2 when the metrics first or last were used. The metrics lmg and pmvd used sequential 

sums of squares from the linear model (defined by the regressors xk in order r) to obtain an overall 

assessment by averaging over the average contributions in models of exhaustive permutations of the 

available regressors.  The metric lmg could thus be written as, 

LMG x k=
1
p !


r permutation

seqR2x k∣r 
, (18)

where

seq R2M∣S =R2M ∪S −R2 S  , (19)

for model M and set S. The metric pmvd was identical to lmg, except a data-dependent weight was 

added for each order, so the allocated contribution of a regressor asymptotically approached zero if the 

true coefficient was zero. Thus, pmvd became

LMG x k=
1
p!


r permutation

p r  seqR2x k∣r  , (20)

where p(r) denotes the data-dependent weights, 

p r = L r 


r permutation
L r  , (21)

such that if all regressors had nonzero coefficients, the permutation r received a weight proportional to

L r =
i=1

p−1

seq R2{xr i1 ,... , xr p
∣xr1 ,... , xri

} . (22)



52

It is important to note that the relative importance metrics and recursive tree models measure 

two distinct types of contributions. The relative importance metrics show the contributions of 

regressors, averaged over all individuals in the data set, in determining variance of the dependent 

variable in any individual. The recursive tree model, however, is designed to find the regressor that 

most effectively segregates – or splits – the data set, even if that regressor does not have the greatest 

explanatory power. It is also important to note that, when a regressor is determined as a splitter at a 

given node in a recursive tree, that regressor is ordered first in the ANOVA, which may positively bias 

the explanatory value (R2, equal to the branch-length on the tree) of that regressor.

Data within taxonomic groups were tested for homogeneity of variance with Bartlett's test and 

for normality with the Shapiro-Wilk's W test. Differences in distributions between taxonomic groups 

were tested with a two-sample Kolmogorov-Smirnov goodness-of-fit test. Differences in neuron-glia 

ratios, cellular densities, and dentate gyrus and cerebellar volumes between different taxonomic groups 

were calculated using Kruskal-Wallis sum rank and comparison tests with a repeated-measures design. 

When the population of the variable was normally distributed, repeated-measures ANOVA were used to 

determine within- and between-group differences in glia-neuron ratio. Statistical significance for all 

analyses was set at 0.05 (two-tailed). All analysis was performed in R with my own code and the 

package SMATR (Warton et al 2006).
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CHAPTER 5
PRIMARY VISUAL CORTEX

To understand the possible anatomical and functional implications of how glia and neurons in 

the primary visual cortex vary across species, we have to understand how anatomy and function in the 

visual cortex vary across species. In this chapter, I will provide the background material necessary to 

understand the results presented below.

Anatomy

The mammalian visual cortex is composed of striate and extrastriate cortices (Fig. 9a,b). The 

striate cortex (the primary visual cortex, V1) is the largest component and homologous in all mammals. 

The number and locations of extrastriate cortices vary considerably among species, but most common 

in primates are areas V2, V3, V4, and the medial temporal cortex (MT). Visual areas are distinguished 

by cytoarchitecture (cortical thickness, cell body size, and cell density), myeloarchitecture (distribution 

and density of myelinated axons), histochemistry, and immunocytochemistry. A combination of these 

cellular countenances is usually needed to distinguish extrastriate areas in tissue sections, whereas V1 

is histologically distinct (although species-specific features of V1 have been discovered through 

histochemical and immunocytochemical techniques, which are discussed below). Generally, a distinct 

area is identified by its exclusive reception of axonal projections. For example, the MT was identified 

in macaques by its direct reception of connections from V1 (Gattass & Gross 1981). Likewise, an area 

can be distinguished by its projections. In platyrrhines, the temporal ventral posterior area was 

identified by its projections to V1 (Krubitzer & Kaas 1993; Beck & Kaas 1998; Rosa & Tweedale 

2001). Neurons in each area provide a discrete representation of the visual field to allow different 

features of the visual image to be analyzed, although this analysis generally depends on multiple 

interconnected areas (see Rosa 2002).

Visual areas can be further divided into modules, in which neurons differ in their patterns of 

connection, physiological character, and/or neurochemical composition. It is suggested that modules 

develop when a new afferent pathway to an existing visual area emerges in a species (Krubitzer 2009). 

The benefit of modularization, compared to adding or segregating new areas, is that it allows circuits of 

neurons that analyze different aspects of an image to communicate more efficiently. For example, 

communication among three circuits that analyze color, texture, and luminance is more efficient for 

overall shape analysis if the circuits (or modules) are topographical neighbors (i.e., separated by 
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micrometers compared to millimeters). This is especially important for understanding how V1 

functions.

Visual areas can be divided into functional groups (Fig. 9c). The pathways connecting V1 and 

V2 to lateral and dorsomedial areas, and eventually the posterior parietal cortex, analyze motion and 

spatial relationships and are collectively called the dorsal stream. The pathways connecting V1 and V2 

to ventrolateral areas, and eventually the inferior temporal cortex, analyze shape, color, and texture and 

are collectively called the ventral stream. The dorsal and ventral streams have been defined as 

functional devices that tell us where and what things are, respectively. Both streams are conserved in 

mammals (Casagrande & Kaas 1994; Fitzpatrick 1996; Binzegger et al 2004; Casagrande et al 2007).

The primary visual cortex is the primary distributor of almost all corticocortical visual 

information. It is also the first cortical area to receive information from the retina (Schmid et al 2010). 

Most of the projections from the retina are channeled through the LGN, but a minority are projected to 

subcortical structures, including a pathway through the superior colliculus to the pulvinar. All 

extrastriate areas (V2, V3, V3A, V4, MT, parieto-occipital (PO), and posterior intraparietal (PIP)) 

receive, directly or indirectly, the majority of their inputs from V1. Posterior extrastriate areas V2, V3, 

V3A, V4, and MT have direct reciprocal connections with V1 (Rosa 2002; Felleman & Larry 2009). 

Most connections between visual areas possess both feed-forward and feedback connections reflecting 

a high degree of interactive processing, although V1 also receives feedback projections from areas to 

which it does not directly project (e.g., the inferotemporal cortex (IT), frontal eye fields, and auditory 

cortex) (Salin & Bullier 1995; Barone et al 2000; Falchier et al 2002).

Connections among cells in V1 suggest that its six cortical layers are arranged as sequential 

visual processing stages that interact horizonally (Fig. 10a), although layers interact vertically, too, 

using networks of intrinsic axons (Fig. 10b). 

The cortical layers of V1 can be further divided into sublayers with distinct afferent and efferent 

connections (a unique quality of V1). In humans, for example, layer IV is subdivided into layers IVa, 

innervated by the magnocellular (M) layer of the LGN, and IVb, innervated by the parvocellular (P) 

layer of the LGN (Preuss 2000; Rosa 2002). The innervations of these sublayers are not conserved in 

primates, as I explain below, but the distinctiveness of layer IV, characterized by a conspicuous 

myelinated band, is conserved in primates (Preuss et al 1999). The functional multiplicity of the 

primate V1 is further characterized by its modular complexity. The response properties of cells in layer 

IVCb differ depending on whether or not they are associated with color-selective cells (so-called 
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blobs), which receive inputs from the P layer of the LGN,  or orientation-selective cells (interblobs) 

which receive  inputs from both the P and M layers of the LGN (Wong-Riley 1993). 

Since the visual cortex has been a site of repeated selection in mammalian evolution, it may be 

informative to consider V1 in an explicitly phylogenetic context.

Evolution

Only two visual areas (V1 and V2) have been identified in marsupials. Although some 

marsupial species (e.g., the woolly opossum and the quoll) have expanded their visual areas to occupy 

Figure 9. Subdivisions of the extrastriate cortex in the macaque monkey. (a) Some of the more 
extensively studied extrastriate areas are specifically identified (V2, V3, V4, and MT, medial temporal 
cortex). (b) The arrangement of striate, extrastriate, and other neocortical areas in a flattened view. 
(c) A schematic of the broadly organized pathways of the visual areas: the ventral pathway leads to 
the temporal lobe and plays an important role in object recognition; the dorsal pathway leads to the 
parietal lobe and plays an important role in spatial vision. Adapted from Maunsell & Newsome, 1987; 
Felleman and Van Essen, 1991.)

(a) (b) (c)
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more than half their neocortices, these expansions were accomplished through enlargement of V1 and 

V2, not through the addition of new visual areas (Rosa 2002). This simple organization of the visual 

cortex is likely representative of the ancestral mammalian condition, from which nearly every 

mammalian lineage has evolved additional extrastriate areas (Kaas 2007; Felleman 2009). Comparative 

imaging research on the visual cortex, which has mostly involved carnivores (cats and ferrets) and 

primates (galagos and macaques), has identified several fundamental features of the mammalian visual 

(a) (b)

Fig 10: Nissl stain of the primary visual cortex clearly reveals the different layers (a). Layer IV is the 
principal cortical input layer; projections from the LGN terminate in this layer. Cells in layer IV then 
project neurons via vertical ascending axons to layers II and III, where extrinsic connections originate 
(i.e., projections to V2). Axons in layer III also project cells to layer V, the cells of which then project to 
layer VI. Layers V and VI constitute the main sources of extrinsic connections to subcortical nuclei (e.g. 
the LGN, superior colliculus, and claustrum). A schematic of the primary visual cortex shows neurons, 
networks of axons, columns and cytochrome oxidase blobs (b). Vertical interactions take place via 
networks of axons and form the dominant functional organization of the visual cortex: columns. Cortical 
columns are characterized by particular response properties shared by all the cells constituting that 
column. In many mammals, axons bring in information from the left and right eyes to non-overlapping 
ocular dominance stripes, the cells of which respond exclusively to stimulation from either the left or the 
right eye. These inputs are then communicated across other layers, forming ocular dominance columns 
that span all six cortical layers (Anderson et al, 1988; Erwin et al, 1995; Rosa, 2002). Images from 
http://webvision.med.utah.edu/authors.html
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cortex (Payne 1993; Rosa 2002; Xu 2005; van Hooser 2007): each representation of the visual field 

maps onto a single cortical area; neurons characteristic of each cortical area respond to different 

features of visual stimuli (such as orientation, speed, colour); each cortical area forms unique functional 

connections with a set of other cortical areas and sub-cortical structures, which together contribute to 

the flow of information across the cortical surface; and the functions of cortical areas can be assessed 

behaviorally. 

Mammals show considerable variation with respect to the wavelengths to which their receptors 

are maximally sensitive (Peichl 2005), types of sensory receptors present (Catania et al 1993; Krubitzer 

et al 1995), and in the size and number of visual cortical areas (Lyon 2006). While functional cell types 

(e.g., orientation-selective cells, such as simple and complex cells) are surprisingly conserved across 

mammals (Hubel & Weisel 1959, 1968; Girman et al 1999; Heimel et al 2005; Ibbotson et al 2005), the 

distributions and relative densities of functional cell types show a strong phylogenetic signal. In 

carnivores, two-thirds of visual cortical cells are directionally selective (i.e., they respond to 

stimulation in one direction compared to the opposite direction) (Gilbert 1977), whereas a minority of 

the cells in the primate visual cortex show direction selectivity (Orban et al 1986; Hawken et al 1988; 

O'Keefe et al 1998), and only one-fifth of the cells in the squirrel visual cortex show direction 

selectivity (Heimel et al 2005). Furthermore, direction-selective cells are present in all layers in the 

carnivore visual cortex, whereas they are only observed in layers IIIc, IVa, and VI in primates, and only 

in layer VI in squirrels. This may indicate that direction-selective cells are not homologous in 

mammals, but that the same receptive field property can be computed in different ways or at different 

lamina in different mammalian species (Van Hooser 2007).

The primary visual cortex is widely believed to be homologous across mammals: it receives 

major visual input from the LGN, possesses a highly granulated layer IV, and has a retinotopic space-

map in all mammals (Rosa & Krubitzer 1999; van Hooser 2007). However, the underlying cortical 

mechanisms appear to be only analogous. 

The mammalian dorsal LGN receives visual inputs from the retina and is reciprocally 

interconnected with the visual cortex. In lineages leading to carnivores, primates and tree shrews, and 

some marsupials, the LGN evolved a highly laminated structure (Sanderson 1974; Kaas et al 1978; 

Kahn & Krubitzer 2002b). Since different laminae in the LGN are assigned to receive visual inputs 

exclusively from the left or right eye, it has been suggested that lamination may have evolved in the 

LGN to prevent the convergence of visual information from both eyes at this level of the brain, as a 
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prelude to such interactions occurring in the cortex where they are essential for depth perception (Van 

Hooser 2007). There are three primary classes of retinal ganglion cells (i.e., retinal cells with different 

morphologies and different physiological response properties) that project to the LGN: parvocellular 

(P), magnocellular (M), and koniocellar (K) in haplorrhines; and X, Y, and W in all other mammals. It 

is unclear whether or not these cells can be considered homologous in haplorrhines and other 

mammals, but there are clear functional parallels. The P/X cells persistently respond to constant visual 

stimulation, whereas M/Y cells respond only transiently. Both cell types have center-surround receptive 

field organization (i.e., ganglion cells that transmit information about contrast) (Rodieck & Stone 1964; 

Cavanaugh et al 2002). K/W cells are a heterogeneous mix of several subtypes (Bullier et al 1984; 

Humphrey et al 1985; Martin et al 1997; Callaway 1998, 2005; Van Hooser 2007). Generally, P/X and 

M/Y cells project to cortical neurons in layer IV, but, specifically, P cells target the lowest tier of layer 

IV (IVCa) and M cells innervate the overlying sublamina (IVCb) (Humphrey et al 1985; Casagrande & 

Kaas 1994). The differences in cortical responses between P and M streams are much more pronounced 

than those between X and Y streams. Consequently, haplorrhines must use more than one strategy to 

resolve stimulus orientation (Ferster & Miller 2000; Sincich et al 2001), since their simple receptive 

fields are built by a core of linear components that are supplemented by nonlinear intracortical inputs 

(Rust et al 2005; Hirsch & Martinez 2006). In carnivores and tree shrews, however, individual cortical 

laminae receive highly overlapping inputs from X and Y cells (Leventhal 1979; Humphrey et al 1985; 

Casagrande & Norton 1991). All P/X and M/Y projections are restricted to V1 (although, there is some 

debate as to whether area 18, which is a recipient of Y cells in carnivores, is in V1 or V2). K/W cells 

make connections with superficial layers. Cytochrome oxidase (CO) is a protein complex that acts as 

the terminal enzyme of respiratory electron transport chains in mitochondria. It is used to identify 

interneurons functionally active in oxidative metabolism. In taxa with blobs of  CO-rich color-sensitive 

cylinders in V1 (i.e., carnivores and haplorrhines), K/W cells target the blobs (Wong-Riley 1979; 

Horton & Hubel 1981). In taxa lacking blobs, projections of W cells to superficial layers are diffuse 

(Harting & Huerta 1983; Usrey et al 1992). 

Most interspecific work on the visual cortex has been done on primates, and has revealed many 

structural and functional divergences from the ancestral condition. But before discussing primates, it is 

worth considering the tree shrew, which represents a sister taxa to primates. It is important to review 

the physiological and functional differences in V1 across taxonomic groups in order to interpret the 

results presented below and place them in the context of related discoveries.
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The organization of V1 in primates and tree shrews is similar concerning topographic 

organization (Kaas et al 1972; Humphrey et al 1980a,b), callosal connections (Cusick et al 1985), 

intrinsic axon patches (Rockland & Lund 1982; Rockland et al 1982; Sesma et al 1984; Bosking et al 

1997; Lyon et al 1998), and labeling for Cat-301 antigen, a monoclonal antibody that recognizes a 

surface-associated antigen on neurons (Jain et al 1994). Differences, however, abound, suggesting that 

the earliest primates underwent considerable changes in V1. Different from primates, the tree shrew V1 

possesses a cleft in its granular layer, lacks blobs, and its modularity is organized according to ON/OFF 

domains (Humphrey et al 1980a, Lund et al 1985; Norton et al 1985; Kretz et al 1986; Wong-Riley & 

Norton 1988). Further differences are noted in the organization of and projections to the LGN, superior 

colliculus, and pulvinar (Lane et al 1971; Casagrande et al 1972; Sherman et al 1975; Norton et al 

1977; Graham & Casagrande 1980; Casagrande & Norton 1991; Lyon et al 2003; Stepniewska 2003), 

as well as in the comparative paucity of extrastriate areas in the tree shrew (Lyon et al 1998; Rosa 

1999; Preuss 2007). This does not mean that the tree shrew V1 is primitive; in fact, there is evidence 

that the tree shrew V1 has evolved an extraordinary overall functional capacity compared to primates 

(Poirazi & Mel 2000; Elston et al 2005).

Strepsirrhines represent an intermediary of visual cortical organization between ancestral 

primate features and haplorrhine features (Rosa et al 1997). The eyes of (nocturnal) strepsirrhines are 

said to retain hallmarks of the ancestral state, which anthropoids have lost. They lack a retinal fovea 

and have a tapetum lucidum (Preuss 2007). In addition to rods, strepsirrhines (and tarsiers) have both 

short-wavelength and medium-large-wavelength cones (Jacobs 1993; Hendrickson et al 2000), and 

greatest visual acuity in the central part of their visual field (Wikler & Rakic 1990). However, there are 

many features of strepsirrhine V1 organization that are conserved in anthropoids: the pattern of 

termination of geniculocortical P and M afferents relative to the cortical layers (Diamond et al 1985; 

Florence & Casagrande 1987; Kaas et al 1978; Lachica & Casagrande 1992; Kaas & Preuss 1993; 

Lachica et al 1993),  the architectonic distribution of CO and calcium-binding proteins (Condo & 

Casagrande 1990; Johnson & Casagrande 1995), massive dorsolateral prefrontal cortical projections to 

the superior colliculus (Preuss 2006), neuronal response properties (DeBruyn et al 1993), and the 

pattern of projections to extrastriate cortex (Krubitzer & Kaas 1990, 1993). Therefore, these features of 

V1 organization were likely established early in primate evolution. 

The organization of the visual cortex is largely conserved in haplorrhines. Similarities in the 

cortical mantle, retinotopic organization, stratification of layer IV into multiple sublayers, the shape of 
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V1, patterns of trans-cortical connections, the branching structure of pyramidal cells, and the presence 

of CO-rich and -poor compartments in V1 correspond strongly in the squirrel monkey, marmoset, owl 

monkey, and macaque (Allman et al 1979; Colby et al 1988; Gattass et al 1985; Weller & Kaas 1987; 

Allman & Mcguiness 1988; Krubitzer & Kaas 1990; Preuss & Goldman-Rakic 1991; Weller et al 

1991;Rosa 2002; Elston & Garey 2004). A further derived feature of the haplorrhine visual cortex is the 

enlargement of Meynert cells in V1 (Le Gros Clark 1942; Zilles 1990; Kaas 2000). Meynert cells 

constitute a morphologically distinct neuronal subtype, which appear in small clusters between layers V 

and VI and are implicated in the detection of motion in the visual field (Meynert, 1867; Chan-Palay et  

al 1974; Palay 1977; Fries et al 1985; Movshon & Newsome 1996; Livingstone 1998; Hof et al 2000). 

The enlargement of Meynert cells is thought to represent the evolution of a cellular substrate for 

specialized sensorimotor capacities, related to the integration of somatosensory and visual signals that 

allowed fine motor control of the digits and control of eye convergence movements, which are 

functions that are poorly developed in carnivores (Sherwood et al 2003).  

Of course, extensive similarities do not preclude interspecific differences. Most famously, 

catarrhines are distinctly characterized by routine trichromatic color vision (see Jacobs & Kaas 2007; 

Ross & Martin 2007; Solomon & Lennie 2007). But since this is mostly the prerogative of V4, not V1, 

I will not discuss it (but see Hurlbert (2003) for a potential role for V1 in color vision). Workers have 

documented phyletic variation in laminar, compartmental, and connectional organization of V1 among 

haplorrhines (e.g., Hassler 1967; Casagrande & Kaas 1994; Preuss 1995) and flagged neuronal 

morphologies and neurochemical phenotypes that distinguish hominoids from other primates (e.g., del 

Rio & DeFelipe 1997; Nimchinsky et al 1999; Hof et al 2000; Sherwood et al 2007; de Sousa et al 

2009). Layer IVa of Old and New World monkeys (Fig. 11), for example, receive a direct geniculate 

projection arising from the P layers of the LGN (Lund 1973; Kaas et al 1976; Horton 1984; Chaudhuri 

et al 1995; Hof & Morrison 1995; Preuss et al 1999), whereas the reduction or loss of a P-geniculate 

projection to layer IVa is indicated in hominoids (Horton & Hedley-Whyte 1984; Hendry & carder 

1993; Wong-Riley et al 1993; Clarke 1994; Yoshioka & Hendry 1995; Preuss et al 1999). Indeed, the 

human layer IVa further appears to be strongly related to the M pathway (Preuss et al 1999; Preuss et  

al 2002). Layer IVa in macaques is distinguished by a dense band of CO-staining that coincides with a 

terminal layer of P cells, reflecting a high level of metabolic activity in that sublayer (Sherwood & Hof 

2007). The CO-rich band is actually a sheet of geniculate-recipient tissue punctuated by regular gaps, 

reflecting a high activity level of geniculostriate afferents and creating a so-called honeycomb 
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Fig. 11: (i) Schematic of the “honeycomb” model of layer 4A organization. Layer 4A in both Old 
and New World monkeys consits of a sheet of tissue that receives direct P-geniculate inputs that 
stain darkly for cytochrome oxidase (CO). The sheet is punctuated by clusters of apical dendrites 
and pyramidal cell somas extending upward from layer 4B, which receives indirect M-geniculate 
inputs and stain densely for MAP2 and NPNF. (ii) CO staining of area V1 in (a) Saimiri, (b) Ateles, 
(c) Macaca, (d) Pongo, (e) Pan, and (f) humans. A CO-dense band is observed in layer IVa in the 
monkeys (a-c), but is conspicuously absent in the hominoids (d-f). (iii) An interpretation of the 
cytochemical changes that took place to V1 during the evolutionary radiation of hominoids. From 
Preuss et al (1999).

(i)

(ii)

(iii)
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Fig. 12: A reconstruction of layer 4A evolution in anthropoid primates. (i) The condition of layer 4A and 
adjacent layers in sections stained for different histochemical markers in a New World monkey 
(Saimiri), an Old World monkey (Macaca), and two hominoids (Pan and Homo). (ii) The phylogenetic 
diagram the genetic relationships among anthropoid primates. The letter code beneath each genus 
name represents the kinds of data published for that genus: (a) the presence or absence of direct 
projections from LGN to 4A; (b) the presence or absence of a CO-dense band; (c) level of expression 
of calbindin in 4A; (d) pattern of expression of NPNF; and (e) the pattern of expression of Cat-301. 
Data are available for 13 anthropoid genera. A reconstruction from these data indicates that the last 
common ancestor of living anthropoid primates had a honeycomb-like layer 4A organization, similar to 
that present in most Old and New World monkeys (see Fig. 12). The ancestral condition was likely 
characterized by direct LGN inputs, a CO-dense band, low expression of calbindin, limited expression 
of NPNF, and low expression of the Cat-301 antigen. This condition, given the data so far available, 
was modified at least twice:after the divergence of the hominoid lineage from the catarrhines, and after 
the divergence of the Pan and Homo lineages. The first modification saw a loss of the CO-dense band 
and an increased expression of calbindin and NPNF. The reduction of CO in the evolution of the 
nocturnal owl monkey (Aotus trivirgatus), which was accompanied by a reduction of LGN afferents, 
may indicate that the CO reduction in hominoid evolution occurred in conjunction with the reduction of 
direct LGN afferents. The second modification was associated with an apomorphic a mesh-like pattern 
of NPNF and Cat-301 expression, as well as the dense expression of calbindin in the interstitial tissue 
zones. After Preuss & Coleman (2002).

(i)

(ii)
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appearance (Henrickson et al 1978; Horton 1984; Fitzpatrick et al 1985; Hevner & Wong-Riley 1990). 

Histochemical staining with microtubule-associated protein 2 (MAP2) and non-phosphorylated 

neurofilament (NPNF) antibodies has shown that pyramidal cell bodies and apical dendrites extend 

upward from layer IVb into IVa, effectively filling in the gaps of the honeycomb (Peters & Sethares 

1991; Hendry & Bhandari 1992; Hof & Morrison 1995; Yoshioka & Hendry 1995; Chaudhuri et al 

1996; Hof et al 1996; Preuss et al 1999). This is interpreted to mean that the macaque layer IVa 

receives both P cells (via the honeycomb wall) and M cells (via the gaps). Studies with thalamocortical 

connectivity (Wiesel et al 1974; Hendrickson et al 1978; DeBruyn & Casagrande 1981; Diamond et al 

1985; Florence et al 1986; Spatz 1989), CO-staining (Carroll & Wong-Riley 1984; Horton & Hedley-

Whyte 1984; Hess & Edwards 1987; Spatz et al 1994; Chaudhuri et al 1995; Preuss et al 1999), and 

NPNF immunohistochemistry (Hof & Morrison 1995; Chaudhuri et al 1996; Hof et al 1996; Preuss et  

al 1999) indicate that a honeycomb architecture is present in all Old and New World monkeys (except 

the nocturnal owl monkey). The dense CO band is conspicuously absent in hominoids. This may, as in 

the owl monkey, indicate a reduction or loss of P-geniculate projections to layer IVa (Horton & Hedley-

Whyte 1984; Wong-Riley et al 1993; Preuss et al 1993). Alternatively, it may mean that P-geniculate 

projections are more dispersed in hominoids than in monkeys, however, evidence, including that 

presented below, does not support this (Tigges & Tigges 1979; Miklossy 1992). Greater functional or 

behavioral differences that might correlate with the reduction of P-geniculate afferents to the hominoid 

V1 are elusive.

Layer IVa in humans can be further distinguished from hominoids and monkeys (Fig. 12). 

Staining with Cat-301 antigen and NPNF reveals a meshwork of neuropil bands in the human layer 

IVa, which is not observed in any other primates (Preuss & Coleman 2002). Increased staining for Cat-

301 and NPNF in humans compared with non-human haplorrhines suggests that the neural apparatus of 

human layer IVa became more strongly related to the M pathway, which finds functional support in 

comparisons between humans and macaques. For example, humans process global features of a 

compound stimulus faster than local features, whereas macaques show a local advantage (Fagot & 

Deruelle 1997); humans show greater temporal and spatial luminance contrast sensitivity than 

macaques at photopic luminances (De Valois et al 1974; Merigan 1980; Harwerth & Smith 1985); and 

attention-related modulation of activity in V1 has been observed to be greater in humans than macaques 

(Heeger 1999). These differences are not concrete and are reportedly confounded by the preference of 

workers for fMRI in humans compared to microelectrode recordings in macaques (Preuss & Coleman 
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2002). If accurate, however, they are consistent with an increase in M-related projections to the human 

V1. It may also be relevant that M-pathway pathology and dysfunction are common features of 

dyslexia (Livingstone et al 1991; Stein & Walsh 1997; Demb et al 1998; Vidyasagar 1999; Stein 2001). 

The sizes of the human V1 and LGN are smaller than predicted for a primate of our brain size 

(Frahm et al 1984; Holloway 1996, 1997). It is unlikely that the human V1 was reduced during 

evolution, but rather that it did not keep pace with the expansion of the neocortex following divergence 

from the great apes. Furthermore, there is no evidence for relaxed visual acuity in humans compared to 

other primates (De Valois et al 1974).
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ANALYSIS I

Aim

The aim of this analysis was to determine how glia and neurons scale in the primary visual 

cortex across taxa, while accounting for phylogeny, brain and body mass, EQ, and gestation length. 

Furthermore, I aimed to determine what, if any, influence mode of placentation, defined by the degree 

of invasion of trophoblast cells into the uterus, had on the above relationships.

Materials

Samples of the left hemisphere of non-pathological postmortem brains representing 73 

mammalian species were used. All samples were from adult brains, except for Trachypithecus francoisi 

and Pithecia pithecia, which were from juveniles with brain sizes comparable to species-typical adult 

averages. Specimens from all collections were immersion-fixed with either 10% formalin or 4% 

paraformaldehyde, embedded in paraffin, serially sectioned, and stained with Nissl in the context of 

this research or unrelated experiments. The original research reported herein was performed under 

guidelines established by the Animals Scientific Procedures Act (ASPA).

Demarcation

The mammalian V1 is a readily identifiable architectonic area (Inouye 1909; Holmes 1917; 

Talbot and Marshall 1941; Daniel and Whitteridge 1961; Schwartz 1977, 1994; Tootell et al. 1988), 

which was identified on the basis of its topological location and distinct appearance in materials stained 

for Nissl (Allman & McGuinness 1988; Hof & Morrison 1995; DeFelipe et al 1999; Rosa & Krubitzer 

1999; Rosa et al 2005). A thin band of heavily myelinated tissue in cortical layer IVCa (the so-called 

stria of Gennari in humans) provided a landmark for identifying the area and its boundaries (Boyd & 

Matsubara 2005). The delineation of V1 in cetaceans was achieved through the MRI studies of Marino 

et al, (2003 2004) and personal assistance from Patrick Hof. The region of V1 used was restricted to 

layers II-VI of the opercular portion of the calcarine cortex towards the occipital pole (Fig. 13). 

Cell counting

Cell-counting was performed using StereoInvestigator software on the equipment outlined 

previously (see Chapter 4 for detailed methodology). For each individual, a random starting section 

was selected in V1. Serial sections spaced at 300-400µm were selected for analysis for each cell type. 
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Boundaries of layers II-

VI were outlined using 

a 10x objective, and a 

virtual 30 x 30µm 

lattice of counting 

frames was randomly 

positioned on each 

slide to cover the 

sampled area with 

approximately 30 

frames per section. 

Counting was 

performed under 

Koehler illumination 

using a 63x (NA 1.4, 

dry) or 100x (NA 1.25, 

oil) objective – a 40x 

(NA 0.65, dry) was 

used with the cetacean 

species, one human 

individual, and one 

chimpanzee individual, 

as the slides were too 

thick for larger objectives. Section thickness ranged from 25µm – 100µm, so the disector thicknesses 

used also varied. A minimum 4µm guard zone, defined as the space between the boundary of the tissue 

section and the part of the section used for counting,  was set on either side of each section. Pilot tests 

were performed for each individual to determine the optimal size of the counting frame (approximately 

2 particles per counting frame). Section thickness was measured at the first and final counting site for 

each section using the microcator. The coefficient of error (CE) was held below 0.8 ± 0.1 for all 

analyses. Cellular density was calculated as the sum of neurons counted with the disectors, divided by 

the product of the sum of the disectors examined and the volume of the disector (Howard & Reed 

Fig. 13: The boundaries of V1 are demarcated by the termination
(arrows) of the pronounced band of granule cells in layer IV. Photo of 
Callicebus moloch.
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1998). 

Neurons were distinguished from non-neuronal cells by the presence of dark, coarsely stained 

Nissl substance in the cytoplasm, a large nucleus, a distinct nucleolus, ovoid shape, and lightly stained 

proximal segments of dendritic processes. Excitatory and inhibitory neurons were not differentiated. 

Glia were expected to lack a conspicuous nucleolus and contain less endoplasmic reticulum than 

neurons (Fig. 14). Astrocytes and oligodendrocytes were not differentiated and are classified simply as 

glia. Neither endothelial cells nor microglia were counted. The nucleolus of neurons and the body of 

glia were used for counting criteria. 

Fig. 14: Neurons (arrowheads) were identified by dark Nissl substance in the cytoplasm, lightly 
stained proximal segments of dendritic processes, and a prominent nucleolus, which was used as 
its characteristic point for counting. Glia (arrows) were identified by the absence of a conspicuous 
nucleolus and less endoplasmic reticulum than neurons. Astrocytes and oligodendrocytes were not 
differentiated.  
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RESULTS I

I first compared cellular densities among carnivores, primates, and all species (AS). The primate 

data were then divided into taxonomic subgroups to test whether cellular scaling relationships were 

conserved in primates. These subgroups were also used to determine if (1) humans and other apes 

deviated from predictions made on Old and New World monkeys and (2) tarsiers were better affiliated 

with Strepsirrhini or Anthropoidea in the context of glia and neuron scaling in V1. Finally, I compared 

cellular densities among placental groups to test whether mode of placentation, compared to behavior 

or phylogeny, had an influence on cellular densities in the primary visual cortex (V1).

Hypothesis and predictions

Comparative studies of the primary visual cortex have shown it to be a site of repeated selection 

both in mammalian and primate evolution. Differences in the cellular composition of V1 have been 

identified between primates and other mammals, strepsirrhines and haplorrhines, cercopithecoids and 

hominoids, and even between humans and other apes. These adaptations suggest that the constraints on 

the cellular organization of V1 are relaxed, and thus it is likely that the relationship of glia to neurons 

will not be uniform across mammalian or even primate taxa. Evidence that the human neocortex has 

been a site of repeated genetic selection, implicating a significant up-regulation in cortical metabolism 

in human evolution, suggests that the human V1 may carry a cellular signature of those molecular 

changes, differentiating its glia-neuron ratio from primate or even hominoid expectations.

Cellular scaling patterns among taxonomic groups

RMA exponents for species mean data and independent contrasts are presented in Table 3; and 

stereological results are presented in the appendix (Tables A1a-d). The All species (AS) group consists 

of 31 species, spanning 13 orders, and is considered representative of Eutheria: 14 species sampled that 

are neither primates nor carnivores, as well as a systematic random sampling of primate and carnivore 

species. For non-parametric tests the AS group was stripped of its primate and carnivore species, in 

order to avoid statistical non-independence when comparing the carnivores and primates with other 

species (Fig. 15). The stripped-down group is referred to as Shrew-to-Whale (SW). 

Glial cell density was found to scale against neuronal density with a significant positive 

exponent for carnivores and AS, as revealed by analysis of both species mean data and independent 

contrasts. For carnivores, the 95% CI of the species mean data included isometry. In primates, glial cell 
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density scaled against neuronal density with a significant positive exponent only for independent 

contrasts, suggesting that the species mean data were obscuring grade shifts among major taxonomic 

groups within the primate data set (Garland et al 1993). Applying weighted least-squares for 

heteroscedasticity in neuronal density (K2 = 7.054, p = 0.029), line-fitting through the origin of LS 

regression slopes for glial cell density on neuronal density for independent contrasts revealed 

statistically different slopes for carnivores (LS slope = 0.789, lower CI = 0.658, upper CI = 0.920, R2 = 

0.365, p = 0.037) and primates (LS slope = 0.536, lower CI = 0.420, upper CI = 0.652, R2 = 0.288, p = 

0.049), and a significant allometric slope for AS (LS slope = 0.541, lower CI = 0.390, upper CI = 

0.692, R2 = 0.720, p = 0.000). The RMA 

plots of glial cell density against neuronal 

density displayed significantly different y-

intercepts for carnivores (y-intercept = 

-0.343, lower CI = -0.678, upper CI = 

-0.008; p = 0.049) and AS (y-intercept = 

1.05, lower CI = 0.754, upper CI = 1.346; p 

= 0.000).

Cellular scaling patterns within Primates

Since the RMA exponent for glial cell 

density on neuronal density for Haplorrhini 

was only significant for independent 

contrasts, the extreme studentized deviate 

method and Cook's distance (set at 50%) 

were used to identify orangutans (Z=3.34) 

and gorillas (Z=3.20) as significant outliers. 

Thus, the ape lineage (Hominoidea) was 

removed from the Haplorrhini data set, as its 

constituents imposed too great an influence 

on the regression. Statistically different 

scaling exponents for glial cell density on 

neuronal density were then generated for 

Figure 15: Bar representations of Kruskal-Wallis sum rank  
and multiple comparison tests showing significant differences  
among  carnivores,  SW,  and primates  for  glia-neuron  ratio  
(c2=28.71,  p=0.000) and between SW and both carnivores  
and primates for neuronal density (c2=27.36, p=0.000). No  
significant  differences  are  shown  for  glial  cell  density  
(c2=1.24, p=0.541). Two-sample Kolmogorov-Smirnov tests  
for  normality  of  distribution  (bootstrap=10000)  showed  
significant differences between carnivores and primates for  
glia-neuron ratio (D=0.688, p=0.000) and neuronal density  
(D=0.675, p=0.000), and between SW and primates for glia-
neuron  ratio  (D=0.765,  p=0.000)  and  neuronal  density  
(D=0.659, p=0.001). Raw values for glia-neuron ratio and  
neuronal and glial cell density are displayed within the bars.  
Bar representations are not shown to scale.



70



71

Strepsirrhini  (RMA = 0.715, lower CI = 0.477, upper CI = 0.998, R2 = 0.335, p = 0.011) and Old and 

New World monkeys (RMA = 1.544, lower CI = 1.22, upper CI = 1.97, R2 = 0.219, p = 0.028) for 

species mean data, which also held for independent contrasts. 

The species mean data and independent contrasts for Old and New World monkeys were used to 

generate log-log LS regression predictions of glial cell density on neuronal density, and glia-neuron 

ratio on brain mass. The values for apes for glia-neuron ratio as a function of brain mass, but not for 

glial cell density as a function of neuronal density (Table 4), fell within the 95% prediction intervals 

(PI) of the LS regression for independent contrasts (Fig. 16). 

When the species mean data and independent contrasts from the non-human apes were used to 

generate log-log LS regression predictions of glial cell density on neuronal density, and glia-neuron 

ratio on brain mass, body mass, and gestation length, the observed human values for glial cell density 

against neuronal density were significantly greater than expected (paired-samples t-test: t=9.02, 

p=0.009) and the observed human values for glia-neuron ratio on brain mass were significantly less 

than expected (paired-samples t-test: t=10.07, p=0.012) for independent contrasts (Table 5). The 

observed values for glia-neuron ratio on body mass and gestation length fell within the 95% PI of the 

LS regression for non-human  ape species mean data and independent contrasts. 

Similarly, log-log regression predictions were generated for Tarsius bancanus and Tarsius 

syrichta from data based on Old and New World monkeys and Strepsirrhini. For both tarsier species, 

the observed glial cell density values fell within the 95% PI of the predicted values based on neuronal 

density scaling in Old and New World monkeys; but the observed glia-neuron ratio values fell within 

the 95% PI based on brain mass in Strepsirrhini (Fig. 16).

Glial cell density on neuronal density
Species mean data Independent contrasts

Species Observed value Predicted value % deviation Within 95% PI %deviation Within 95% PI
Homo sapiens 169824 83884 51 no 42 no
Pan troglodytes 144544 79432 45 no 29 no
Pan paniscus 138038 79238 43 no 30 no
Gorilla gorilla 123027 63942 48 no 40 no
Pongo pygmaeus 134896 66024 51 no 43 no
Hylobates muelleri 93325 82593 12 yes 5 yes
Symphalangus syndactylus 101103 89839 11 yes 4 yes
Macaca fascicularis 100201 90002 10 yes 1 yes

Table 4: Deviations of predicted from observed values for cell densities in V1 for apes based on OLS regressions
generated from plots of Old and New World monkeys (p<0.05)
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Cellular scaling patterns among placental groups

Significantly different RMA exponents for glial cell density against neuronal density were 

found between the epitheliochorial (slope = -0.229, lower CI = -0.646, upper CI = 0.188, R2=0.859, p = 

0.000) and both the endotheliochorial (slope = 1.216, lower CI = 0.973, upper CI = 1.459, R2 = 0.046, 

p=0.043), and haemochorial (slope = 1.240, lower CI = 1.004, upper CI = 1.476, R2 = 0.056, p = 0.003) 

independent contrasts (Table A2). ANOVA revealed a significant main effect of placental group on glia-

neuron ratio (F2,80 = 14.25, p = 0.000). Bonferroni post hoc comparisons of mean glia-neuron ratio 

showed that the epitheliochorial (1.10 ± 0.35) and haemochorial (0.51 ± 0.21) groups differed 

significantly (p < 0.05). 

regressions of non-human apes (p<0.05)
Species mean data Independent contrasts

Observed value % deviation % deviation
Glia-neuron ratio Brain mass 0.72 1.16 -60 no -57 no

Body mass 0.74 -3 yes 2 yes
Gestation 0.67 8 yes 10 yes

Table 5: Deviations of predicted from observed values for cell densities in V1 for humans based on LS 

Dependent 
variable

Independent 
variable

Predicted 
value

Within 95% 
CI

Within 95% 
CI
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Figure 16: The 
allometric scaling of 
(top) glial cell density 
on neuronal density 
and (bottom) glia-
neuron ratio on brain 
mass for species mean 
data in primates. (top) 
The dotted line 
represents LS 
regressions fitted to Old 
and New World 
Monkeys species mean 
data (y = 1.54x –3.55, 
R2 = 0.531, p = 0.011); 
the black line 
represents LS 
regressions fitted to 
independent contrasts 
mapped back into tip 
species space (y = .31x 
–2.21, p = 0.018), 
calculated to predict 
hypothetical species 
points attached to the 
branch leading to apes 
by pruning apes from 
the tree and rerooting it 
at the last common 
ancestor of apes and 
other primates. (bottom) 
Significant scaling 
exponents are 
presented for 
Anthropoideafor 
species mean data (y = 
0.301x –1.04, R2 = 
0.650,p = 0.000) and 
independent contrasts 
(y = 1.31x –2.11, p = 
0.002). 
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DISCUSSION I

Across all species in our sample, the mammalian V1 displays a significant scaling relationship 

between glial cell density and neuronal density, with species mean data suggesting that increases in 

neuronal density in V1 outpace increases in glial cell density. For the same taxa, the ratio of glia to 

neurons in V1 are significantly explained by an isometric relationship with brain mass, although the 

explanatory value of this relationship is weak. In carnivores, glial cell density scales similarly with 

neuronal density, although the relationship here is isometric, and glia to neuron ratio is also 

significantly explained by brain mass. Primates, however, differ from this pattern in that there is no 

significant relationship between glial cell density and neuronal density, nor does glia to neuron ratio 

relate to brain mass across the order. This is likely due to substantial variation in scaling patterns 

between the taxonomic subgroups of primates. Furthermore, apes (including humans) display a higher 

ratio of glia to neurons than expected based on scaling expectations for Old and New World monkeys; 

and within the apes, humans display distinguished patterns of cellular densities. While relative 

increases in glia to neurons in larger cerebral cortices may often relate to the energetic costs of 

maintaining larger dendritic arbors and long-range projecting axons that are required, I propose that 

this relationship does not necessarily hold when considering a limited cortical region or restricted 

phylogenetic range. In primates, deviations in cellular densities observed in certain lineages may 

represent the evolution of specialized projection layers in V1 along those lineages. Accordingly, I 

suggest that the relative increase in glia to neurons in the human V1 may represent an evolutionary 

adaptation for increased metabolic activity among tightly packed populations of granule cells adapted 

for rapid, achromatic visual awareness. 

Constraints on cellular densities in a limited cortical region 

Previous studies have concluded that brain mass in mammals is an explanatory variable of the 

allometric relationship of glia to neurons in the neocortex (Hawkins & Olszewski 1957; Friede & Van 

Houten 1962; Tower & Young 1973; Herculano-Houzel et al 2007). These studies, however, were 

problematic for interpreting the evolution of cellular densities in the mammalian V1 because they 

represented few species and considered the neocortex as a single region. Furthermore, the scaling 

relationships in the above studies were calculated using only species mean data, so it remains unclear 

whether the observed relationships were real or artifacts of phylogenetic relatedness (but see Gabi et al 

2010). My study was designed specifically to analyze cellular densities in the mammalian V1 with 
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respect to the effects of statistical non-independence due to phylogenetic relatedness. In cases where 

independent contrast slopes were contained within the 95% CI of slopes calculated for species mean 

data, I have concluded that the scaling relationships observed in contemporary taxa represent changes 

that have occurred repeatedly throughout multiple nodes in the phylogenetic tree and, therefore, 

represent functional constraints in the design of V1. 

By examining allometric scaling relationships across taxa, it is possible to gain insight into the 

functional implications of changes in brain size, which is collectively determined by molecular, 

electrochemical, and physical design constraints. Other studies of species mean data sampled from a 

range of mammals have demonstrated that neuronal density in the neocortex scales with brain mass 

with an exponent of approximately -0.3 (Tower 1954; Prothero 1997; Sherwood et al 2007). My results 

produced similar scaling exponents for neuronal density on brain mass for AS (-0.376±0.61), 

suggesting that cortical neuronal density is limited by architectural constraints imposed by brain mass. 

In line with these results is a model predicting that a constant average percent of interconnectedness 

among neurons cannot be physically sustained with increasing gray matter volume, and therefore the 

reach of processing networks does not keep pace with brain size variation (Changizi 2001). However, 

the slightly steeper slopes observed in carnivores (-0.437 ± 0.50) and primates (-0.531 ± 0.23) 

demonstrate that neuronal density may become relatively disassociated from brain mass in certain taxa 

or when comparisons are made among close phylogenetic relatives (see Sherwood & Hof 2008). 

Factors underlying neuronal density, such as glial cell density, may reflect brain region-specific 

evolutionary adaptations within phylogenetic lineages that result in such deviations.

As brain size increases over evolutionary time, the distance that information must travel across 

an enlarged region or between regions also increases. This extra distance can cause substantial delays 

that may affect behavior (Swadlow 2000). Any mechanism capable of reducing the delay, therefore, 

will likely have a selective advantage. One of these mechanisms is myelination (Hartline & Colman 

2007), which is able to reduce delays in information processing in larger brains by wrapping axons 

with myelin synthesized by oligodendrocytes (Wang et al 2008). Furthermore, the energy required per 

neuron is expected to increase with longer dendrites and axons, in order to sustain Na+/K+-pumps that 

restore ion gradients to propagate both actions potentials along the axon and excitatory potentials in the 

dendritic tree (Lennie 2003). Therefore, since neurons in large-brained mammals display larger 

dendritic arbors, more spines (Elston et al 2006), and have larger associated axonal diameter and length 

(Harrison et al 2002) than neurons in small-brained mammals, the role for glial cells in modulating 
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expansive arbors (Laming et al 2000; Hertz et al 2001) and long-range projecting axons predicts that 

larger-brained mammals will have increased glia-neuron ratios to pay for their increased costs of 

neuronal activity (see Nedergaard et al 2003; Sherwood et al 2006). My results only partially support 

this prediction. On the one hand, carnivores and AS demonstrated positive scaling exponents for glia-

neuron ratio as a function of brain mass, showing that, indeed, large-brained species have higher glia-

neuron ratios than small-brained species. But in contrast, glial cell density was not shown to outpace 

neuronal density in increasingly large brains in any taxonomic group; mean values of glial cell density 

were not significantly different across carnivores, SW, or primates; and glia-neuron ratio displayed 

pronounced diversity among taxonomic groups. Therefore, while brain size appears to contribute 

significantly to constraining neuronal density in a limited cortical region, and glial cell density is 

related to neuronal density, glial cell density in V1 does not appear to be directly constrained by brain 

size. 

The phylogenetic diversity of glia-neuron ratio in my data highlight the difficulty of using brain 

mass as an indicator of cellular densities. I propose that such diversity is predicated on both cellular 

mechanisms acting on energy metabolism and behavioral adaptations affecting visual cortical 

processing, and that each adaptation promotes a quantifiable evolutionary signature in neuronal and 

glial cell proliferation.

Placentation and the neocortex in Eutheria

If increasing glia to neurons is metabolically expensive in the developing brain, then we should 

expect cellular densities to relate to the availability of maternal resources to the fetus in a species 

(Martin 1981; Elliot & Crespi 2009). My data support this prediction. The RMA scaling exponent for 

glial cell density on neuronal density in the epitheliochorial group, in which the fetus has only indirect 

access to the maternal blood supply (Mossman 1987), is negative for independent contrasts (RMA 

slope = -0.229, lower CI = -0.115, upper CI = -0.458, R2 = 0.86, p = 0.000), whereas the slopes for 

independent contrasts in the endotheliochorial (RMA slope = 1.216, lower CI= 0.974, upper CI= 1.588, 

R2=0.046, p=0.043) and haemochorial (RMA slope = 1.240, lower CI= 0.989, upper CI= 1.615, 

R2=0.056, p=0.003) species, in which the fetus has more direct access to the maternal blood supply 

than species in the epitheliochorial group, scale with positive allometry. However, it is more than 

simply the invasiveness of the placenta, defined by the number of layers between fetal and maternal 

blood flow, that determine the efficiency of exchange or relative availability of resources in the 
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placenta (Enders & Carter 2004). Patterns of association between maternofetal interdigitation and 

interhemal barrier along eutherian lineages shown below (see Chapter 8, Life-history Correlates of  

Placental Evolution) have indicated that evolution of placental invasiveness was not principally driven 

by a need for more efficient oxygen exchange (also see Wildman et al 2006). The significant predictive 

power of gestation length for glia-neuron ratio in AS (t-value = 4.729, p = 0.000) and carnivores (t-

value = 2.976, p = 0.008) and the significantly different scaling coefficients for cellular densities 

among the placental groups indicate that placentation affects the relationship of cortical glia to neurons 

in the evolving mammalian brain. While epitheliochorial species may benefit from long gestation 

periods, their placental antithesis, haemochorial species, benefit from the invasion of trophoblast cells 

into the uterus, allowing both invasive and non-invasive placental types to support increasing 

investment into the brain during the course of mammalian evolution.

Specializations in primate motion-processing pathways show glia-neuron signatures

My results suggest that evolutionary variation in the cortical microstructure (e.g., laminar, 

compartmental, connectional) of V1 displays phylogenetic diversity that is represented by quantitative 

changes in the cellular scaling of glia to neurons, which may themselves be considered evolutionary 

adaptations. Statistically significant differences in the scaling exponents of glia to neurons support 

three evolutionary events along the primate phylogenetic tree: the divergence of Strepsirrhini and 

Haplorrhini, the divergence of apes from Old and New World monkeys, and the divergence of humans 

from other apes. RMA scaling exponents for independent contrasts in Haplorrhini, but not in 

Strepsirrhini, deviate from the scaling exponent generated for AS. As such, it is more parsimonious to 

say that Strepsirrhini represents the ancestral primate condition, although it is also likely that both 

suborders have deviated from the ancestral condition with increased visual specialization.

In Strepsirrhini, glial cell density scales roughly isometrically with neuronal density. This is 

different from the pattern observed in Old and New World monkeys, but consistent with the 

relationships found in AS and SW (species mean: RMA slope=0.629, lower CI=0.376, upper CI=0.811, 

R2=0.285, p=0.023; independent contrasts: RMA slope=0.677, lower CI=0.420, upper CI=0.845, 

R2=0.212, p=0.029). Therefore, it appears there may have been little pressure along the strepsirrhine 

lineage to relax ancestral mammalian constraints on glia-neuron scaling in V1. The reliance of 

strepsirrhine visual acuity on rods, for example, as well as the reduced necessity of long-range, X-

related thalamic inputs from the LGN in nocturnal species, may have displaced the need for changes in 
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glia-neuron metabolic coupling for adequate visual processing. The nocturnal owl monkey (Aotus  

trivirgatus), however, was not shown to deviate from expectations based on Haplorrhini.

The phylogenetic affinity for the family Tarsiidae has been debated for over a century (Hartwig 

2002). To determine whether tarsiers are better affiliated with Strepsirrhini or Anthropoidea in the 

context of glial cell and neuronal densities in V1, I plotted the observed values for Tarsius bancanus 

and Tarsius syrichta against predictions for both species based on log-log LS regressions of 

Strepsirrhini and Old and New World monkeys. Although observed values for glia-neuron ratio fell 

closer to prediction values based on brain mass in Strepsirrhini than in Old and New World monkeys, 

glial cell density on neuronal density scaled with allometric expectations based on Old and New World 

monkeys, rather than Strepsirrhini. Therefore, while the tarsier V1 may have been impacted by certain 

life-history or anatomical adaptations associated with Strepsirrhini (e.g., nocturnality, short- and mid-

wavelength cone distribution, and small body mass), the molecular mechanism constraining the 

relationship of glia to neurons observed in Old and New World monkeys seems most likely to have 

been established at the anthropoid stem lineage. 

In Haplorrhini, glial cell density scaled significantly with neuronal density in V1 for species 

mean data and independent contrasts only when apes were not considered, suggesting an evolutionary 

shift in glia-neuron scaling in V1 at the divergence of apes and other haplorrhines. The novel 

honeycomb-like geometric arrangement of P- and M-related dendrites in layer IVa of Old and New 

World monkeys that is conspicuously absent in great apes (Preuss et al 1999) may have been 

concurrent with the observed shift in glia-neuron scaling. The loss of a P-geniculate projection to layer 

IVa in great apes also may have been accompanied by a concomitant shift in neuronal activity in V1. 

While the observed human values for glial cell density on neuronal density fell outside the 95% 

PI based on a LS regression of Old and New World monkeys, the observed glia-neuron ratio in humans 

fitted well with predicted values based on brain mass, and much better, in fact, than with the predicted 

values based on a LS regression of non-human apes. Observed human values for glia-neuron ratio were 

lower than expected based on scaling exponents for brain mass and gestation length, but within 95% PI 

based on body mass, for non-human apes. A hypothetical species affixed to the hominoid phylogenetic 

tree with the observed human glia-neuron ratio I calculated to weigh 53 kg, gestate for 245 days, and 

have a brain weighing 318 g, showing that the human V1 deviates from the ancestral hominoid pattern 

of glia-neuron scaling. The presence of a strong M-geniculate projection to layer IVa in humans 

(Wong-Riley et al 1993), which is not found in any other great apes (Preuss & Coleman 2002), may be 



79

the reason for the observed increase in neuronal activity. Furthermore, comparative studies of gene 

expression and cerebral blood flow indicate exceptionally high metabolic activity in the human 

neocortex that might generally explain increased neuronal activity in the human neocortex. High-

density oligonucleotide arrays have identified many genes differentially expressed in the human brain 

(Caceres et al 2003; Uddin et al 2008), which predicts levels of neuronal activity to be exceptionally 

high in the human neocortex as a result of a considerable upregulation of total gene expression in 

human evolution (Dicicco-Bloom et al 1998; Suh et al 2001; Ferland et al 2004; Vallender et al 2008). 

The possibility that the human brain has a uniquely high metabolism is further defended by evidence 

that, despite trends for larger brains to have lower metabolic rates (per unit volume of tissue) than 

smaller brains (Aiello & Wheeler 1995), conscious-state cerebral glucose metabolic rates in the human 

brain (Bohnen et al 1999; Bentourkia et al 2000) are as high or higher than those in macaques (Cross et  

al 2000; Noda et al 2002). The upregulation of genes related to lipid metabolism and the importance of 

dietary docosahexaenoic acid to Na+/K+-ATPase activity (Bourre et al 1989; Djemli-Shipkolye et al 

2003) may be indicative of the importance of dietary changes (e.g., the exploitation of lipid- and 

docosahexaenoic acid -rich thalassic resources or the scavenging of organ tissue) in early human brain 

evolution (see Aiello & Wells 2002; Broadhurst et al 2002; Crawford 2006; Leonard et al 2007).  

Significant molecular changes in the brain may be reflected in corresponding compositional or 

connectional changes. There is evidence that biochemical mechanisms of generating energy have been 

under evolutionary selection as early as the anthropoid stem (Grossman et al 2001 2004), when brain 

size began increasing in primates above mammalian predictions. Considering together the consistency 

of human glia-neuron ratio with predictions based on overall brain mass and V1 volume (observed glia-

neuron ratio=0.72; predicted=0.74, lower PI=0.66, upper PI=0.80) in Old and New World monkeys, the 

deviation of human glial cell density from predictions based on neuronal density in Old and New World 

monkeys, and recent evidence that the human V1 has a novel mesh-like arrangement of M-geniculate-

related dendrites in layer IVa (Preuss et al 1999; Preuss & Coleman 2002) and considerable up-

regulation of genes in the neocortex (Caceres et al 2003), it is possible that cortical specializations of 

the motion-processing pathway in humans occurred without dramatic changes in overall brain or even 

V1 size. 

The diverse cellular scaling relationships among primate taxa, human divergence from glia-

neuron ratios based on hominoid predictions, and decreased glial cell density based on neuronal density 

scaling in Haplorrhini emphasize phyletic variation in the evolution of V1, identify changes in glial 
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cell and neuronal densities as significant evolutionary adaptations, and support the claim that humans 

have evolved differentially higher requirements for metabolic support in the neocortex.

Body mass is a poor parameter for intelligence

 The unparalleled enlargement of the human brain observed since Homo erectus against a 

backdrop of cultural and technological developments (Stout et al 2008; Stout & Chaminade 2009), and 

in the context of relatively static body size (see Robson & Wood 2008; Ruff 2010), has led many to 

speculate that the evolutionary enlargement of brain size as a function of body size may be taken as a 

proxy for intelligence (e.g., Jerison 1973; Kappelman 1996; Marino 1998). While this has certain 

obvious insights (e.g., metabolic investment in brain tissue is expensive), the use of body size as a 

parameter for intelligence must confront inconsistencies in the data. Simply because brain size scales 

with body size does not mean that intelligence is a function of deviations from brain-body scaling 

relationships. That is, the best physiological estimate of a behavioral capacity – a specific type of 

intelligence evolved to exploit a particular niche – cannot be determined a priori. If we assume that the 

model of intelligence based on brain-body scaling is accurate, then a tarsier (Tarsius syrichta) must 

employ more behavioral complexity than a bear (Ursus maritimus), since the former has a higher EQ 

than the latter (1.38 compared to 0.72). But then it is difficult to also assume that the extra 450g of 

brain weight in the bear has no behavioral implications. In other words (see Barlow 1985), why does an 

increase in EQ in a large-brained species require so much more brain tissue than an equal increase in a 

small-brained species, when the increases are expected to confer the same jump in intelligence? In 

hominin evolution, if evolutionary increases in brain size from Australopithecus africanus followed the 

primate brain-body scaling relationship, then we would expect Neanderthals to have displayed an 

increase in brain size of approximately 200cm3 rather than the observed 1000cm3, and humans to 

display an increase of approximately 100cm3 rather than the observed 900cm3 (Holloway 2008). If 

primate or mammalian brain-body scaling cannot explain brain evolution in hominins, should we 

expect it to explain brain evolution in other species?

Several recent studies have concluded that the cellular properties of different regions of the 

human brain scale well with predictions for other primate brains (Herculano-Houzel et al 2007; 

Sherwood et al 2007; Azevedo et al 2009). These studies conflict with the long-held view that the 

human brain is approximately four-times larger than expected for a primate of human body mass 

(Jerison 1973; Marino 1998). My data, too, show that the observed human glia-neuron ratio as a 
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function of brain mass can be explained by expectations based on haplorrhine species mean data. 

Furthermore, paired comparisons between individual observed human glia-neuron ratios and 

predictions based on a LS regression of Old and New World monkey independent contrasts did not 

reveal a significant difference (paired-samples t-test: t = 1.17, p = 0.499), suggesting that scaling 

constraints on the brain may be more conserved than those on the body. In this respect, perhaps it is 

worth considering (see Herculano-Houzel 2010) that body mass in great apes has deviated considerably 

from the primate trend, but with only minor affects on scaling of the brain. In most primate species, the 

brain represents approximately 2% of total body mass (Marino 1998), whereas the brains of gorillas 

and orangutans represent less than 1% of total body mass (Semendeferi & Damasio 2000). Rather than 

humans having a larger brain than expected for their body size, hominids (specifically gorillas and 

orangutans) may have evolved larger bodies than expected for their brain size. A recently discovered 

fossil of an ostensible stem catarrhine, with an indicated body mass of 15-20kg (Zalmout et al 2010), 

allows for the possibility that body mass has increased considerably in hominoid, but not Old or New 

World monkey, evolution (see Soligo 2006). The consistently poor correlations in my data between EQ 

and cellular densities, accompanied by recent evidence that absolute brain size is the parameter that 

best correlates with behavioral complexity in different species (Roth & Dick 2005; Deaner et al 2007), 

indicate that body size may not be a relevant parameter for measuring intelligence. If that is the case, 

then the intelligence of humans, or at least the constraints imposed on selection for processing the 

visual cortex, may be the consequence of a scaled-up monkey brain.
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CHAPTER 6
HIPPOCAMPUS

To understand the possible anatomical and functional implications of how glia and neurons in the 

hippocampus vary across species, we must understand how hippocampal anatomy and function vary 

across species. In this chapter, I will provide the background material necessary to understand the 

results presented below.

Structure

The hippocampal formation (HF) occupies the medial wall of the temporal lobe (Fig. 17). It 

consists of the entorhinal cortex (EC) and subicular complex (SubC), in addition to the cornu Ammonis 

(CA) and dentate gyrus (DG, fascia dentate). The EC is the main input for cortical and subcortical 

projections (Butler & Hodos 2005). Flow of information in the HF is directional, with signals 

propagating from the DG to CA3 to CA1 to the SubC, and then out to the EC (Amaral & Insausti 1990; 

Joelving et al 2006). The amygdala is often considered as part of the HF, since it is the primary input 

structure of the hippocampus from the cortex (Russell & Gabrieli 1997). For comprehensive 

descriptions of the HF, see Ramon y Cajal (1911 1968), Lorente de No (1934), Vogt & Vogt (1937), 

Blackstad (1956 1958), Scoville & Milner (1957), Gastaut & Lammers (1961), Isaacson (1974), 

Angevine (1975), Chronister & White (1975), Tryhubczak (1975), O'Keefe & Nadel (1978), Carpenter 

& Sutin (1983), Schwerdtfeger (1984), Kahle (1986), Amaral & Insausti (1990), Williams (1995), 

Moser & Moser (1998), and Duvernoy (1998).  

The hippocampus is located in the allocortex and consists of the CA and DG. The structure is 

bilaminar, with one lamina rolled up inside the other. In early development, the two laminae are 

continuous; the DG becomes concave and slips beneath the medial end of the CA until, finally, the DG 

and CA assume apposed C-shaped laminae separated by the hippocampal sulcus (Williams 1995), 

resembling a coupler on a train. In primates, compared to other mammals, the hippocampus is located 

inferiorly, as though the temporal lobe in which it resides has been rotated around the posterior pole of 

the corpus callosum. The hippocampus is structurally segmented into dorsal and ventral compartments 

(known as posterior and anterior in primates), which will be discussed below.

The CA is divided into six layers (Fig 18). In coronal sections, the CA is histologically 

heterogeneous and has been divided into four fields: CA1-4. Pyramidal neurons in CA1 are typically 

triangular and relatively scattered. Subfield CA2 is much denser and narrower than CA1, consisting of 
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Figure 17. (a) The hippocampal formation (HF) is located in the allocortex and consists of the cornua Ammonis 
(CA) and the dentate gyrus (DG). In early development, the CA and DG are continuous, until the latter becomes 
concave and slipes beneath the medial end of the former and the two lamina become apposed, separated by 
the hippocampal sulcus, resembling a coupler on a train (Williams, 1995). In primates, compared to other 
mammals, the hippocampus is located inferiorly, as though the temporal lobe in which it resides has been 
rotated around the posterior pole of the corpus callosum. The HF is a multilayered structure. The three layers 
highlighted here (b,c) were used in this study: (light grey) the stratum pyramidalecontains pyramidal neurons 
that constitute CA1-3 and whose dendrites arborize in deeper layers of the hippocampus; (dark grey) the 
stratum moleculareof the dentate gyrus receives fibres from the perforant pathway and possesses commissural 
and septal fibers; and (black) the stratum granulosum, or principal layer, of the dentate gyrus, contains somata 
of densely packed granular neurons that arborize superficially in the stratum moleculareand inputs to CA3 via 
mossy fibres. (d) Pyramidal neurons in CA1 are typically triangular and relatively scattered. Subfield CA2 is 
much denser and narrower than CA1, consisting of large, ovoid, densely packed somata. Pyramidal neurons in 
CA3 are also large and ovoid, but less densely packed than in CA2, and receive synaptic input from mossy 
fibres that arise from the dentate gyrus. Neurons (arrowheads) were identified by dark Nissl substance in the 
cytoplasm, lightly stained proximal segments of dendritic processes, and a prominent nucleolus, which was 
used as its characteristic point for counting. Glia (arrows) were identified by the absence of a conspicuous 
nucleolus, and their smaller size and less endoplasmic reticulum compared to pyramidal neurons. Astrocytes 
and oligodendrocytes were not differentiated. Photographs taken at the National Museum of Health and 
Medicine, Washington, D.C: (a) Macaca  nemestrina, 1x objective; (b,c) Sorex  araneus, 20x objective; (d) 
Saguinus oedipus, 100x objective.



84

large, ovoid, densely packed somata; it 

is conspicuous in haplorrhines (Amaral 

et al 1984), but only arguably present 

in other mammals (Blackstad 1956; 

Schwerdtfeger 1984; Duvernoy 1998). 

Pyramidal neurons in CA3 are also 

large and ovoid, but less densely 

packed than in CA2, and receive 

synaptic input from mossy fibers that 

arise from the DG. The fourth division, 

CA4, more commonly known as the 

hilus, is situated within the concavity 

of the DG. 

The DG is separated from CA1-3 

by the hippocampal sulcus. The main 

layer of the DG is the stratum 

granulosum, which contains the somata 

of densely packed granular neurons 

that arborize superficially in the 

stratum moleculare and form synaptic 

contact with inputs from other brain 

regions (Bedi 2003; Keuker et al 

2003). The outermost layers of the stratum moleculare receive fibers from the perforant pathway, while 

the innermost layer, which contacts the stratum granulosum, possesses commissural and septal fibers 

(Lynch & Cotman 1975; Cerbone et al 1993). The polymorphic layer of the DG is crossed by axons of 

granular neurons and conjoins the hilus to the stratum granulosum. 

The DG is distinguished by postnatal and adult neurogenesis: the adult mammalian DG bears new 

functional neurons that are integrated into the hippocampal circuitry (Eriksson et al 1998; Van Praag et  

al 2002).  The rat DG bears 80% of its granule cells after birth (Schlesinger et al 1975), and several 

studies have shown that these cells continue to be produced into adulthood (Bayer et al 1982; Kaplan & 

Bell 1983, 1984). The functional significance of new neurons in the adult hippocampus has not been 

Figure 18. The cornu Ammonis is divided into six layers: 
the alveus (1) contains axons of the hippocampal and 
subicular neurons; the stratum oriens (2) contains basket 
cells (GABAergic interneurons) and is crossed by axons 
of pyramidal neurons as they travel to the alveus; the 
stratum pyramidale (3) contains pyramidal neurons, 
whose dendrites arborize in the strata oriens and 
moleculare; the stratum radiatum (4) possesses mostly 
apical dendrites (traveling to the stratum moleculare) that 
connect with Schaffer collaterals, fibers from septal 
nuclei, and commissural fibers; the stratum lacunosum (5) 
is populated with axons formed of perforant fibers and 
Schaffer collaterals; and the stratum molecular (6), which 
contains a small population of interneurons only and 
blends with the dentate gyrus in later stages of 
development. Since the allocortex usually shows only 
three layers, the strata radiatum, lacunosum, and 
moleculare are grouped into one layer (i.e., the molecular 
zone). Image adapted from tissue immunostained with 
anti-ChAT antigen (www.brainmuseum.org).
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determined, although it is thought that the new neurons either replace dying neurons (Beibl et al 2000) 

or provide a greater degree of plasticity to the mature brain (Van Praag et al 2002). 

Circuitry

Activity within the HF involves two circuits. Fibers originating in the posterior parietal cortex 

(Brodmann's area 7) project to the EC via the parahippocampal gyrus and eventually to the 

polysynaptic pathway described below. The association of the posterior parietal cortex with the 

superior colliculus indicates that its function involves perception of the spatial position of an object 

(Andersen et al 1990; Mountcastle 1995). The polysynaptic pathway is composed of a chain of 

glutamatergic neurons passing sequentially from the EC to the DG, CA3, CA1, and SubC (Amaral & 

Insausti 1990; Francis et al 1994). This outputs principally to the anterior thalamic nucleus, directly or 

by way of the mammilo-thalamic tract, and secondarily to the hypothalamus and intralaminar nucleus 

(O'Keefe & Nadel 1978; Teyler & DiScenna 1984; Bentivoglio et al 1993). Nervous implulses are 

projected from the thalamus to the cingulate cortex (area 23) and the retrospinal cortex (areas 29 and 

30) (Duvernoy 1998). Fibers originating in the inferior temporal association cortex (areas 37 and 40) 

reach the entorhinal cortex by way of the perirhinal cortex and communicate information about the 

recognition and description of an object, which is then processed in the intra-hippocampal direct 

pathway. In the direct pathway, which bypasses the polysynaptic pathway, pyramidal neurons in CA1 

project to the SubC, whose axons return to the deep layers of the EC (MacLean 1992), and then output 

to the inferior temporal association cortex, the temporal pole, and the prefrontal cortex (Squire et al 

1994; Duvernoy 1998). These pathways thus segregate the processing of episodic and spatial memory 

(polysynaptic pathway) from semantic and non-spatial memory (direct pathway). Likewise, the EC, 

which is the sole input to the hippocampus, is segregated into functional zones, as is the SubC, which is 

the main output of the EC (Amaral et al 1987; Witter & Groenewegen 1992). Specific dorsal and 

ventral circuits are discussed in detail below.

Evolution 

Most comparative studies of the HF have focused on identifying structural and functional 

homologs in vertebrates (Sherry & Schacter 1987; Squire 1992; Cohen & Eichenbaum 1993; Insausti 

1993; Burwell et al 1995; Brown & Aggleton 2001; Aboitiz et al 2002; Bingham et al 2003; Day 2003; 

Jacobs 2003; Salas et al 2003). These studies have been extremely fruitful, because the cytoarchitecture 
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and connectivity of the hippocampus, and even features of the EC and SubC, are largely conserved in 

mammals, especially compared to the organizational diversity of the mammalian neocortex. This is 

somewhat surprising, since the many complex and highly organized patterns of interconnectivity of the 

HF would be ideal for evolutionary divergence. Furthermore, the HF serves the same basic mnemonic 

function across mammals: rapid learning, complex associative organization, and the recording of 

retrievable experiences (Poldrack & Gabrieli 1997; Schacter et al 1998; Eichenbaum & Cohen 2001; 

Manns & Squire 2002). 

Similarities in topology, development, connectivity, neurochemistry, and neuroendocrinology 

have identified the dorsal and medial cortices in reptiles and the hippocampus and parahippocampus in 

birds as homologous regions of the mammalian hippocampus (Holmgren 1922, 1925; Northcutt 1974; 

Butler 1976, 1980; Ouimet et al 1985; Casini et al 1986; Berbel 1987; Martinez-Garcia & Olucha 

1987; Bingman et al 1990; Bingman & Mench 1990; Martinez-Garcia & Lorente 1990; Northcutt & 

Ronan 1992; Davila et al 1993; Gahr et al 1993; Martinez-Garcia et al 1993; Luis del Iglesia et al 

1994; Young et al 1994; Butler & Hodos 1996; Roth & Westhoff 1999; Lathe 2001; Gonzalez & Lopez 

2002). Both homologous regions are three-layered, positioned medially, adjacent to the main ventricle, 

develop from the pallial telencephalon, receive strong projections from the olfactory and visual cortices 

(Hoogland & Vanderzee 1993; Lavenex & Amaral 2000; Atoji et al 2002), project strongly to the 

ipsilateral septum, which is also a  highly conserved region in vertebrates (Krayniak & Siegel 1978; 

Neary 1990; Manns & Eichenbaum 2007), and have an ability to associate incoming information by 

virtue of synaptic plasticity (Bliss & Lomo 1973; Shapiro & Wieraszko 1996; Munoz et al 1998). 

Lesioning of the homologous hippocampus in reptiles, birds, and teleost fish (whose lateral pallium is 

widely considered to be homologous to the mammalian hippocampus (Rodriguez et al 2002)) has been 

documented to cause deficits in spatial memory similar to those observed in rodents (O'Keefe & Nadel 

1978; Morris et al 1982; Powers 1990; Holtzmann 1999; Colombo & Broadbent 2000; Stone et al 

2000; Day et al 2001; Lopez et al 2001; Rodriguez et al 2002; Bingman 2003; Salas et al 2003). It is 

most parsimonious, therefore, to assume that the fundamental organization of the hippocampus evolved 

early in vertebrate phylogeny and was retained in tetrapods. Certain features of the hippocampus have 

been selected on, however, in mammalian evolution. The route by which non-olfactory sensory 

information reaches the hippocampus, for example, has become increasingly ambagious over 

mammalian evolution (Neary 1990; Ulinksi 1990), so that the flow of ascending sensory information is 

re-routed through the neocortex. Furthermore, the losses of direct sensory inputs from the dorsal 
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thalamus to the DG and of direct projections out of the hippocampus in mammalian evolution mean 

that there are no homologs for the EC or SubC in reptiles (Perez-Clausell 1988; Iglesia & Lopez-Garcia 

1997; Streidter 2005). There has been a general trend in mammalian evolution to connect the 

hippocampus to more cortical regions (Hoogland & Vermeulen-Vanderzee 1993; Dubbeldam 1998; Ten 

Donkelaar 1998; Atoji et al 2002). Some of these evolutionary changes, present in mammals and absent 

in reptiles, are confounded by their presence in birds. According to some (Montagnese et al 1996; 

Szekely 1999; Colombo & Broadbent 2000; Aboitiz et al 2002; Hough et al 2002; Kahn et al 2003), all 

major mammalian subdivisions of the HF, and even the wiring of the subdivisions, are present in birds. 

These similarities are most plausibly homoplastic. There is no evidence, however, that the homologous 

bird hippocampus is involved in non-spatial memory (Strasser et al 2004), although the homologous 

hippocampus in goldfish is reportedly important for spatial and non-spatial memory (Alvarez et al 

2003; Broglio et al 2005). It is possible that the ancestral vertebrate hippocampus was involved in 

spatial and non-spatial memory, and that birds and reptiles selected for only the spatial aspect of the 

structure, while the increased adaptive value of the olfactory bulb in mammals (see Aboitiz et al 2002) 

advanced the evolution of the hippocampus to support non-topographic sensory information. In any 

case, the functional condition of the ancestral vertebrate hippocampus is difficult to tie down, but it is 

evident that, early in their evolution, vertebrates evolved a structure (or network of structures) to form 

stable associations among pieces of information that bear no shared topographic similarities. So 

advantageous was this structure, most mammalian adaptations have been focused on parahippocampal 

regions (e.g., the EC and SubC).

Variations observed in the HF of different mammalian species are rarely fundamental enough to 

be considered reorganizational and generally vary according to brain size. For example, the border 

demarcating CA1 to the SubC and the presence of CA2 are less clearly defined in smaller-brained 

mammals than in larger-brained mammals (Bakst & Amaral 1984; West et al, 984; Green & Mesulam 

1988; Kunzle & Schuller 2001; Kunzle & Radtke-Schuller 2001). The overall size of the hippocampus 

increases in higher species (O'Keefe & Nadel 1978; Stephan 1983; West & Schwerdtfeger 1985), 

although cetaceans have an exceptionally small hippocampus (Jacobs et al 1979; Stephan & Manolescu 

1980; Schwerdtfeger 1985). The EC follows a similar trend of increased differentiation in higher, 

larger-brained species (West et al 1984; Insausti 1993; Kunzle & Radtke-Schuller 2001; Manns & 

Eichenbaum 2007). Increased differentiation of the EC is not generally accompanied by changes in 

connectivity between the EC and the hippocampus (Witter & Groenewegen 1984; Buhl & Dann 1991; 
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Witter & Amaral 1991; Witter 1993; Van Groen et al 2002), although some differences have been 

observed in the laterality of projections (Amaral & Witter 1995). The only major variation in input to 

the HF documented in mammals concerns the olfactory bulb. In rats, a direct projection from the 

olfactory bulb to nearly the entire EC is observed (Price 1973), whereas the olfactory bulb projects to 

only 15% of the EC in macaques (Witter et al 1989) and 5% in humans (Insausti et al 1995). The 

strength of the olfactory bulb projection to the EC varies predictably, with strong projections found in 

macrosomatic mammals and weak projections found in microsomatic mammals (Insausti et al 2002). 

This reduction in primates is often interpreted as a reduction in the capacity for the EC to support odor-

related memory, an interpretation supported by lesioning studies in rats (Dudchenko et al 2000) and 

humans (Levy et al 2003). Other differences in connectivity and structure (e.g., the apomorphic 

posterior parahippocampal cortex in primates (Preuss 2006) and the subdivision of retrosplenial area 29 

in anthropoids (Zilles et al 1986)) are generally reflections of interspecific differences in neocortical, 

rather than hippocampal, organization. Species-specific variations in the distribution of neuropeptides 

(Sakamoto et al 1987) and the near absence of commissural fibers in humans compared to non-

primates (Wilson et al 1987) suggest that functional differences of the hippocampus may also exist 

among mammals (see below).

Since the neural mechanisms underwriting quantifiable traits related to the hippocampus (e.g., 

episodic memory) are poorly understood,  identifying selection pressures on those neural mechanisms 

across taxa is problematic. But it is important to understand what aspects of behavior, environment, and 

development may lead to altered numbers of glia and neurons in the hippocampus. On the assumption 

that the hippocampus is demonstrably important for spatial memory in mammals and birds (Sherry & 

Vaccarino 1989; Sherry et al 1989; Hampton & Shettleworth 1996), the adaptive specialization 

hypothesis (Krebs et al 1989) has been applied to the hippocampus, such that the volume of the 

hippocampus is proposed to be directly related to memory capability (Garamszegi & Eens 2004; Lucas 

et al 2004). This hypothesis recently found support in a study of chickadees, which observed 

hippocampal neuron numbers to correlate strongly with increasing climatic harshness (Roth & 

Pravosudov 2009). The authors explain that, in birds, the ability to retrieve caches during demanding 

times in harsh climates (defined as a function of latitude) may select for increased investment in the 

hippocampus. No experiment has yet been constructed to test morphology of the mammalian 

hippocampus as a function of a behavior analogous to food-storing or cache-retrieval. Studies in rats 

(Rapp & Gallagher 1996; Rasmussen et al 1996), mice (Calhoun et al 1998), tree shrews (Keuker et al 
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2004), and macaques (West et al 1993; Berman et al 1997; Keuker et al 2003a) have demonstrated that 

aging has no effect on neuron numbers in hippocampal subfields (CA1-4, DG, or SubC). Furthermore, 

tree shrews were shown to preserve neuron numbers despite measurements of  impaired working 

memory, and some rats and macaques to preserve neuron numbers despite measurements of impaired 

reference memory (Keuker et al 2003a 2004). In a very different type of quantitative study in 

mammals, comparing polygamous meadow voles and monogamous field voles, hippocampal volume 

was recorded as absolutely and relatively larger in male than in female meadow voles, but of 

comparable absolute and relative size in male and female field voles (Jacobs et al 1990). It is unknown 

whether or not the hippocampus is a particularly vulnerable or favorable site for sexual dimorphism, 

nor is it clear why it would be. Further studies using mammalian species are needed to identify 

selection pressures that may have influenced interspecific variation in the mammalian hippocampus.

Shared and derived functions 

This much is clear: removal of the hippocampus affects spatial learning, episodic memory, and 

contextual fear. The remarkable plasticity of hippocampal neurons, whose physiological states are 

modified by repetitive stimulation (i.e., long-term potentiation), are ideal for learning, conscious 

recollection of events and relations among events, and spatial recognition (Bliss & Lomo 1973; Alger 

& Teyler 1976; Trillet 1992; Kopelman 1993; Eichenbaum et al 1994; Kesner 1994; Markowitsch 

1995a,b; for a review of neuronal and synaptic plasticity on memory processing, see Wang et al, 

(1997)). The hippocampus is further implicated in regulating emotional behavior and certain aspects of 

motor control. Projections from the polysynaptic pathway converge on the anterior cingulate cortex, 

where the spino-reticular-thalamo-cortical pathways involved in the perception of pain terminate 

(MacLean 1992; Vogt et al 1993; Graybiel et al 1994; Adolphs et al 1995; Ono et al 1995; Williams 

1995). By virtue of its partial control of the limbic loop (ventral striatal loop), the hippocampus is 

suggested to be involved in motor behavior (Groenwegen et al 1991; Witter & Groenewegen 1992; 

MacLean 1992; Williams 1995). Most famously, however, the hippocampus is described functionally 

as a cognitive map, an integrator of environmental information. Effectively, the cognitive map of an 

environment becomes increasingly internalized (i.e., independent of external sources of information) as 

a function of an individual's familiarity with that environment (O'Keefe & Nadel 1978; Burgess et al 

1999a,b; Jacobs 2003). Comparative studies may help demonstrate how limited these operational 

definitions of the hippocampus are, which features of the human hippocampus are derived, and whether 
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the cognitive map is generally an appropriate metaphor to describe how the hippocampus functions.

There is evidence that rats (and birds) are able to remember where and when unique events 

occurred (Morris 2001; Clayton et al 2003; Dere et al 2005; Eacott et al 2005), an ability that has been 

explicitly connected to hippocampal function (Ergorul & Eichenbaum 2004) and characterized as 

equivalent to episodic memory in humans (Tulving 1983; Clayton & Dickenson 1998). Studies using 

signal detection theory (Yonelinas 2001) further support this characterization (Yonelinas et al 2002; 

Fortin et al 2004; also see Donaldson 1996; Squire et al 2004). Further animal studies suggest that 

'where' and 'when' information can be recorded in the absence of explicit motivation, and that the 

hippocampus supports purely cognitive memory (O'Keefe & Dostrovsky 1971; Barrientos et al 2002; 

Stote & Fanselow 2004). 

Many studies have implicated hippocampal firing patterns in representing unique associations of 

stimuli, behavior, and place, and the context in which these associations are learned. In rats and 

humans, hippocampal cells fire in association with a particular odor and place, stimulus familiarity, 

and, sometimes, a particular goal (Wood et al 1999; Ekstrom et al 2003). Evidence from fMRI studies 

suggest that humans express highly abstracted representations of space in large, anisotropic neuronal 

ensembles in the hippocampus (Hassabis et al 2009). Additionally, humans and macaques are observed 

to have similar neuron firing patterns in the hippocampus in association with non-spatial stimuli 

(Kreiman et al 2000a; Hampson et al 2004), with further evidence that some hippocampal neurons 

represent abstract features (e.g., mental images) of non-spatial stimuli (Kreiman et al 2000b; Manns & 

Eichenbaum 2007). The hippocampus was initially proposed to be involved in emotional states based 

on its position in the Papez-MacLean limbic circuit (which involves the mammillary bodies, thalamic 

nucleus, cingulate cortex,  prefrontal cortex, amygdala, and septum) (Papez 1937; MacLean 1952; Gray 

& Jeffrey 1971; Sokolov & Vinograda 1975) and evidence that removal of the medial temporal lobe 

resulted in profound emotional disturbances in macaques (Kluver & Bucy 1937). More recent studies 

showing the effects of the hippocampus on hormonal stress response (Jacobson & Sapolsky 1991; 

McEwen et al 1997; Herman et al 2005; Dedovic et al 2009) and associations of the hippocampus with 

post-traumatic stress disorder, depression, and bipolar disorder (Frey et al 2007; Bonne et al 2008) 

have strengthened initial proposals linking the hippocampus to emotion. 

Thus, the hippocampus may be functionally segregated into two anatomical parts: the cognitive 

dorsal hippocampus (spatial memory) and the emotional ventral hippocampus (non-spatial memory) 

(Fanselow & Dong 2009), although the adjectival assignments may turn out to be somewhat superficial 
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with more research. Anatomical segregation of the hippocampus into dorsal and ventral parts (known 

as posterior and anterior parts in primates) was first proposed by Moser & Moser (1998), based on 

evidence that the dorsal hippocampus (DH) and ventral hippocampus (VH) have distinct inputs and 

outputs (Swanson & Cowan 1977), that spatial memory is uniquely dependent on the DH (Moser et al 

1995), and that lesions on the VH, but not on the DH, alter hormonal stress responses and emotional 

behavior (Henke 1990). Division of the hippocampus into the DH and VH is further supported by gene 

expression divided along the rostral/caudal-dorsal/ventral extent of the hippocampus (Fanselow & 

Dong 2009), the significant discrepancy of place field density in the DH and VH (Jung et al 1994), and 

the preferential projection of visuo-spatial information from the caudolateral band of the EC and of 

visceral, gustatory, and olfactory information from the medial band of the EC to the DH and VH, 

respectively (Insausti et al 1997; Dolorfo & Amaral 1998; Burwell 2000). For these reasons, it is 

simplest to discuss the functional capacities of the hippocampus in terms of the unique capacities of the 

DH and VH. 

Studies in rats and macaques have recorded the strongest cortical projections from the DH in the 

retrosplenial and anterior cingulate cortices (Vogt & Miller 1983; Risold et al 1997; Van Groen & Wyss 

2003; Parvizi et al 2006; Cenquizca & Swanson 2007; Kobayashi & Amaral 2007; Roberts et al 2007), 

two areas that are principally involved in spatial navigation (Harker & Winshaw 2004; Maguire et al 

2006; Spiers & Maguire 2006; Lavenex et al 2007), memory processing (Han et al 2003; Frankland et  

al 2004; Jones & Wilson 2005) and visuo-spatial information (Lavenex et al 2006), and the strongest 

subcortical projections in the mammillary nuclei and anterior thalamic complex (Swanson & Cowan, 

2975; Kishi et al 2000; Ishizuka 2001), two areas favorably populated by orientation-selective neurons 

(Taube 2007). It is argued, therefore, that the dorsal circuit is an important interface for navigating, 

orienting, and executing behaviors in a familiar environment (Taube 1990; Muller et al 1996; Jeffrey 

2007). Furthermore, connections with the ventral tegmental area, substantial nigra, and mammillary 

body (Mogenson et al 1983; Groenewegen & Russchen 1984; Groenewegen et al 1996) have been used 

to suggest a caudal behavior-control column that underlies expression of exploratory or foraging 

behavior (Swanson 2000) through control of locomotion, orientation, and spatial direction (Fanselow & 

Dong 2000). Lesioning and fMRI studies largely support these conclusions (Jarrard 1989; Moser et al 

1993, 1995; Bannerman et al 1999 2002; McHugh et al 2004; also see Barkus et al 2010). 

In rats and macaques, the VH is directly connected to the olfactory bulb, as well as the anterior 

olfactory nucleus, piriform cortex, and endopiriform nucleus (Cenquizca & Swanson 2007; Roberts et  
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al 2007). It has bidirectional connectivity with amygdalar nuclei receiving olfactory sensory inputs 

(Saunders et al 1988; Kishi et al 2000; Pitkanen et al 2000; Petrovich et al 2001; Witter & Amaral 

2004; Cenquizca & Swanson 2007), as well as with the infralimbic, prelimbic, and agranular insular 

cortices (Chiba 2000; Thierry et al 2000; Jones & Wilson 2005; Hoover & Vertes 2007; Roberts et al 

2007). These connections form a series of projections that innervate the paraventricular and medial 

zones of the hypothalamus, which control neuroendocrine, autonomic, and somatic motor activities 

associated with ingestion, reproduction, and defense (Kishi et al 2000; Dong et al 2001a; Petrovich et  

al 2001; Herman et al 2005; Dong & Swanson 2006). These connections, which form a VH network, 

are implicated in regulating response to psychological stress (Cullinan et al 1993; Choi et al 2007 

2008) and anxiety (Walker et al 2009) through inhibiting hypophyseal secretion of adreno-

corticotrophic hormones (Jacobs 1979; Teyler et al 1980; Herman et al 1989; Diamond et al 1996), as 

well as in mediating reward processing (Wassum et al 2009), taste aversion learning (Koh et al 2009), 

components of Pavlovian fear conditioning (McGaugh 2004; Fanselow & Poulos 2005; Rodrigues et al 

2009), and possibly even sleep-wake circadian cycles (Saper et al 2005) through direct projections to 

amygdalar nuclei, the nucleus accumbens, and the suprachiasmatic nucleus (Watts et al 1987; 

Groenewegen et al 1996; Naber & Witter 1998; Pitkanen et al 2000; Petrovich et al 2001; Kishi et al 

2006; Cenquizca & Swanson 2007).
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ANALYSIS II

Aim

The aim of this analysis was to determine how glia and neurons scale in the CA fields across taxa, 

while accounting for phylogeny, brain and body mass, gestation length, and volumetric estimates of the 

dentate gyrus. Furthermore, I aimed to determine what, if any, influence mode of placentation, defined 

by the degree of invasion of trophoblast cells into the uterus, had on the above relationships.

Materials

Samples of non-pathological postmortem brains representing 62 mammalian species were used 

(Table 1). All samples were from adult brains, except for Trachypithecus francoisi and Pithecia  

pithecia, which were juveniles with brain sizes comparable with species-typical adult averages. 

Specimens from all collections were immersion-fixed with either 10% formalin or 4% 

paraformaldehyde, embedded in paraffin, serially sectioned, and stained with Nissl in the context of 

unrelated experiments. Specimens that were not previously serially sectioned and stained were 

processed as outlined above. 

Demarcation of CA1-3

The pyramidal cell regions CA1-3 were not distinguished in this study. The end of the CA layer 

adjacent to the hilus was well defined in all species examined by the abrupt change in the organization 

of neuronal cell bodies (Rosene & Van Hoesen 1987; Amaral & Insausti 1990; Amaral & Witter 1995; 

Keuker et al 2003). The opposite end of the CA layer, which is adjacent to the SubC, was marked by 

progressively less dense cell populations. The border between the CA and the subiculum was defined as 

the point at which the superficial cells of the CA ceased to be contiguous (West et al 1991; Keuker et al 

2003). The CA regions were delineated at 20x magnification (Fig. 17)

Demarcation of the dentate gyrus

The stratum granulosum of dentate gyrus (StrGr) is the most densely packed layer of the 

hippocampus and stains intensely for Nissl (Fig. 17). The layer is not in immediate contact with other 

densely packed layers of the hippocampus (e.g, CA1). Depending on the orientation of the sections, the 

DG  appeared in the shape of a horseshoe or something similar to the outline of a steamer. The stratum 
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moleculare (StrMol) was delimited by the StrGr, CA1, hilus, and the strip of the stratum lacunosum, 

and was distinguished by a homogeneous opaqueness (Duvernoy 1998).

Cell counting in CA1-3

Cell-counting was performed using StereoInvestigator software on the equipment outlined 

previously (see Chapter 4, Methodology A: Brain Data). For each individual, a random starting section 

was selected in the CA. Serial sections spaced at 300-400μm were selected for analysis for each cell 

type. Boundaries were outlined using a 20x objective; a virtual 25 x 25μm lattice of counting frames 

were randomly positioned on each slide to cover the sampled area with approximately 30 frames per 

section. Counting was performed under Koehler illumination using a 100x (NA 1.25, oil) objective – a 

63x (NA 1.40, dry) was used with one human and one chimpanzee individual, as the slides were too 

thick for larger objectives. Section thickness ranged from 25μm – 100μm, so the disector thicknesses 

used also varied. A minimum 4μm guard zone was set on either side of each section. Pilot tests were 

performed for each individual to determine the optimal size of the counting frame (approximately 2 

particles per counting frame). Section thickness was measured at the first and final counting site for 

each section using the microcator. The average coefficient of error (CE) was 0.7 ± 0.1 for all analyses. 

Cellular densities were estimated using the sampling fractions derived from these stereologic estimates. 

Neurons were distinguished from non-neuronal cells by the presence of dark, coarsely stained 

Nissl substance in the cytoplasm, a large nucleus, a distinct nucleolus, ovoid shape, and lightly stained 

proximal segments of dendritic processes. Excitatory and inhibitory neurons were not differentiated. 

Glia were expected to lack a conspicuous nucleolus and contain less endoplasmic reticulum than 

neurons (Fig. 17). Astrocytes and oligodendrocytes were not differentiated and are classified simply as 

glia. Neither endothelial cells, identified by their stellate outline and cytoplasm containing membrane-

bound vesicles, nor microglia were counted (Sherwood et al 2006; Pelvig et al 2008).The nucleolus of 

neurons and the body of glia were used for counting criteria. The nuclei of basket cells, present in the 

CA, were of similar appearance to those of pyramidal neurons, so they were not distinguished from 

pyramidal cells and counted all the same. This is not assumed to have impacted significantly the 

estimated neuronal densities, as basket cells comprise less than 1% of the neurons in the CA (West et al 

1991).
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Volumetric estimates of the dentate gyrus

The volumes StrGr and StrMol of the DG were determined using Cavalieri's direct volume 

estimate (see Chapter 4, Methodology A: Brain Data). An average of 20 sections were sampled for each 

individual. The cross-sectional area for every 4-6th serial section was delineated at 40x  magnification. 

Each delineated region was then projected onto a black screen at a known magnification, and a lattice 

of evenly spaced points was superimposed on it. The number of points falling on each layer were 

counted using a systematic 'paint' tool. 

Section thickness ranged from 25μm – 100μm. The distance between points on the grid was 

60μm. This distance was determined by pilot studies on mouse and human brains. Section thickness 

was measured at the first and final counting site for each section using the microcator at 63x 

magnification. 

 Estimates of the CEs were calculated with the Gundersen–Jensen estimator (Gundersen & Jensen 

1987; Gundersen et al 1999) and held below 0.8 ± 0.1 for all analyses. 
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RESULTS II

I quantified glial cell and neuronal densities in CA1-3 and volumetric estimates of the stratum 

granulosum and stratum moleculare of the dentate gyrus in 66 mammalian species (spanning 11 

orders). The purpose of the study was to test whether the developmental processes establishing adult 

glia and neuron densities in the hippocampus are conserved in mammals, whether cellular distributions 

of different subfields of the mammalian hippocampus evolve in concert, and, finally, how cellular 

properties of the different regions are influenced, over evolutionary time, by phylogeny, anatomy, and 

mode of placentation. 

Hypothesis and predictions

Comparative studies of the hippocampal formation (HF) have indicated that, despite its 

complexity, it is a largely conserved system in the mammalian brain. It is likely, therefore, that the 

relationship of glia to neurons in CA1-3 will not vary significantly among the taxonomic groups. 

However, variation observed in CA2 between rodents and primates (Bakst & Amaral 1984; West et al, 

984; Green & Mesulam 1988; Kunzle & Schuller 2001; Kunzle & Radtke-Schuller 2001) may lead to 

slightly different relationships between the scaling of cellular densities in CA1-3 and volumetric 

estimates of the dentate gyrus, since the geometric expansion of the HF may be expected to change 

according to the presence or absence of CA2. Furthermore, increasing connections between the HF and 

neocortical regions in larger mammalian brains (Hoogland & Vermeulen-Vanderzee 1993; Dubbeldam 

1998; Donkelaar 1998; Atoji et al 2002) may suggest some increased degree of scaling between the HF 

and neocortex in higher primates. However, the early development of the HF during ontogeny suggests, 

according to the concerted evolution hypothesis (Finlay & Darling 1995), that the HF is highly 

constrained and unlikely to be a site of repeated or major selection. Cellular and volumetric properties 

of the HF are likely to show little variation across taxa with brain mass and body mass. 

Scaling of the CA subfields in mammals

RMA exponents for species mean data and independent contrasts are presented in Table 6; and 

stereological results are presented in the appendix (Tables A1-d). For non-parametric tests the all 

species (AS) group was stripped of its primate and carnivore species in order to avoid statistical non-

independence when comparing the carnivores and primates with other species. The stripped-down 
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group is referred to as Shrew-to-Whale (SW). Multivariate analyses for primates were calculated both 

including and omitting neocortical volume as a regressor. Unless explicitly stated, the calculations 

below refer to analyses that omitted neocortical volume.

Glial cell density was tested as a function of neuronal density for each taxonomic group and 

scaled with significant isometry in AS, carnivores, and primates for species mean data. The slopes were 

grade-shifted between primates (y-intercept = -0.686, lower CI = -0.912, upper CI = -0.499, p < 0.05) 

and both carnivores (y-intercept = 0.484, lower CI = 0.220, upper CI = 0.709, p < 0.05) and AS (y-

intercept = 0.960, lower CI = 0.689, upper CI = 0.531, p < 0.05).  Applying weighted least-squares for 

heteroscedasticity in neuronal density (K2 = 6.175, p = 0.046), line-fitting through the origin of LS 

regression slopes for glial cell density on neuronal density revealed statistically similar slopes for AS 

(slope = 0.467, lower CI = 0.276, upper CI = 0.658 ; R2 = 0.650, p < 0.001), carnivores (slope = 0.550, 

lower CI = 0.365, upper CI = 0.718 ; R2 = 0.190, p < 0.001), and primate (slope = 0.733, lower CI = 

Independent contrasts
Dependent variable Independent variable RMA Lower 95% CI Upper 95% CI p RMA Lower 95% CI Upper 95% CI p

AS neuronal density 0.780 0.289 0.629 0.968 0.000 0.971 0.224 0.767 1.253 0.000
(n=39) -0.739 0.070 -0.578 -0.946 0.037 -0.793 0.030 -0.651 -1.103 0.193

-0.699 0.076 -0.547 -0.894 0.030 -0.773 0.044 -0.588 -1.090 0.116

Neuronal density -0.948 0.337 -0.769 -1.168 0.000 -0.819 0.245 -0.647 -1.056 0.000
-0.896 0.319 -0.726 -1.108 0.000 -0.801 0.188 -0.609 -1.097 0.001

0.833 0.182 0.661 1.050 0.001 0.868 0.117 0.685 1.154 0.008
0.788 0.159 0.623 0.996 0.001 0.837 0.059 0.653 1.147 0.065

brain mass (g) 0.420 0.272 0.337 0.522 0.000 0.589 0.125 0.483 0.819 0.006
body mass (kg) 0.323 0.228 0.258 0.405 0.000 0.391 0.156 0.309 0.505 0.002
gestation length (d) 1.168 0.323 0.945 1.442 0.000 1.570 0.118 1.194 2.010 0.008
EQ 1.307 0.062 1.022 1.671 0.050 -1.660 0.019 -1.261 -2.075 0.306

Carnivores neuronal density 0.872 0.095 0.553 1.375 0.032 1.009 0.192 0.777 1.258 0.046
(n=20) -0.741 0.002 -0.460 -1.193 0.841 -0.836 0.005 -0.627 -1.171 0.791

-0.670 0.003 -0.416 -1.079 0.818 -0.753 0.006 -0.558 -1.040 0.761

Neuronal density -0.850 0.424 -0.588 -1.227 0.002 -0.769 0.228 -0.630 -0.992 0.039
-0.769 0.422 -0.532 -1.111 0.002 -0.706 0.186 -0.537 -0.975 0.066

0.939 0.311 0.630 1.402 0.011 0.908 0.142 0.681 1.271 0.111
0.850 0.302 0.568 1.271 0.012 0.834 0.105 0.659 1.143 0.176

brain mass (g) 0.471 0.301 0.315 0.705 0.012 0.610 0.133 0.500 0.860 0.125
body mass (kg) 0.351 0.289 0.234 0.528 0.014 0.381 0.167 0.282 0.579 0.082
gestation length (d) 1.096 0.445 0.764 1.572 0.001 1.510 0.253 1.133 1.948 0.028
EQ 1.568 0.051 0.985 2.498 0.339 -1.626 0.034 -1.268 -2.228 0.450

Primates neuronal density 1.052 0.365 0.792 1.396 0.000 1.185 0.402 0.888 1.492 0.000
(n=34) -0.900 0.103 -0.644 -1.257 0.065 -1.771 0.026 -1.346 -2.285 0.413

-0.859 0.116 -0.616 -1.198 0.049 -1.151 0.153 -0.874 -1.484 0.040

Neuronal density -0.855 0.288 -0.634 -1.154 0.001 -1.592 0.022 -1.270 -2.180 0.447
-0.817 0.275 -0.604 -1.104 0.001 -0.999 0.138 -0.739 -1.250 0.052

0.784 0.048 0.556 1.107 0.213 -1.425 0.004 -1.094 -1.852 0.750
0.749 0.034 0.529 1.059 0.297 -1.054 0.011 -0.814 -1.359 0.601

brain mass (g) 0.393 0.067 0.280 0.553 0.141 -0.763 0.008 -0.626 -1.083 0.648
body mass (kg) 0.331 0.069 0.236 0.466 0.132 0.567 0.000 0.431 0.822 0.938
gestation length (d) -1.953 0.022 -1.378 -2.768 0.404 -2.718 0.219 -2.174 -3.724 0.014
EQ 1.189 0.004 0.836 1.691 0.724 -1.562 0.048 -1.234 -2.080 0.261

0.529 0.072 0.350 0.799 0.240 0.962 0.001 0.735 1.386 0.906

Table 6: Slope estimates for scaling relationships among cell densities in CA1-3 (cells/mm³), volumetric estimates of the hippocampus, and anatomical variables
                        Species mean data

Taxa R2 R2

Glial cell density
StrGc  (µm³)
StrMol  (µm³)

StrGc  (µm³)
StrMol  (µm³)

Glia-neuron ratio StrGc  (µm³)
StrMol  (µm³)

Glia cell density
StrGc  (µm³)
StrMol  (µm³)

StrGc  (µm³)
StrMol  (µm³)

Glia-neuron ratio StrGc  (µm³)
StrMol  (µm³)

Glia cell density
StrGc  (µm³)
StrMol  (µm³)

StrGc  (µm³)
StrMol  (µm³)

Glia-neuron ratio StrGc  (µm³)
StrMol  (µm³)

Neocortex volume (cm³)
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Figure 19a: Recursive trees and relative importance metrics for determining glia-
neuron ratio in AS. The variables included (BrM, brain mass; BdM, body mass; GstL,  
gestation  length;  EQ,  encephalization  quotient;  StrGr,  volumetric  estimate  of  the  
granule cell layer of the dentate gyrus; StrM, volumetric estimate of the molecular  
layer of the dentate gyrus) collectively explain 43.34% of the variance observed in  
glia-neuron ratio  in  AS.  The relative  importance  metrics  lmg and pmvd show the  
differential  contribution  of  gestation  length  to  be  significantly  greater  than  the  
contributions of each of the other variables (i.e., the 95% CI for the differences do not  
include zero). The metric last shows comparable (i.e., the 95% CI for the differences  
include zero) contributions from gestation length, StrGr, and StrM, and the metric first  
shows  all  variables,  except  EQ,  to  give  comparable  significant  contributions  to  
variance in glia-neuron ratio. The recursive tree model for glia-neuron ratio shows  
brain mass to be the foremost and greatest (branch lengths are representative of the  
deviance explained by each variable) contributor to variance in glia-neuron ratio,  
with gestation length becoming the principal determinant in both small-brained (<39  
g) and large-brained (>39 g) species, revealing complexity in the model. The variable  
StrGr only  becomes significant  at  a  terminal  node in  large-brained,  small-bodied  
(<16 kg) species, reflecting its relative importance in the metric last. All values in (i)  
and (ii) are log-transformed.
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Figure 19b: Recursive trees and relative importance metrics for determining glia-
neuron ratio in Carnivores. The variables included (BrM, brain mass; BdM, body  
mass;  GstL,  gestation  length;  EQ,  encephalization  quotient;  StrGr,  volumetric  
estimate of the granule cell layer of the dentate gyrus; StrM, volumetric estimate of  
the molecular layer of the dentate gyrus) collectively explain 65.5% of the variance  
observed in glia-neuron ratio. The relative importance metrics lmg and pmvd show  
the differential contribution of gestation length to be significantly greater than the  
contributions of each of the other variables (i.e., the 95% CI for the differences do  
not  include  zero).  The  metric  last  shows  comparable  (i.e.,  the  95%  CI  for  the  
differences include zero) significant contributions from all variables, and the metric  
first shows all variables, except EQ, to give comparable significant contributions to  
variance in  glia-neuron ratio.  The metric  pmvd further shows the contribution of  
StrGr to be significantly greater than the contributions of each of the other variables,  
except gestation length.  The recursive tree model supports  the pmvd metric,  with  
gestation length explaining the majority of variance in glia-neuron ratio, and StrGr  
becoming the principal determinant in species with a short gestation length (<81 d).  
All values in (i) and (ii) are log-transformed.
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Figure 19c: Recursive trees and relative importance metrics for determining glia-
neuron ratio in Primates. The variables included (BrM, brain mass; BdM, body  
mass;  GstL,  gestation  length;  EQ,  encephalization  quotient;  StrGr,  volumetric  
estimate of the granule cell layer of the dentate gyrus; StrM, volumetric estimate of  
the  molecular  layer  of  the  dentate  gyrus)  collectively  explain  30.22%  of  the  
variance observed in glia-neuron ratio. The relative importance metric lmg shows  
the differential contribution of gestation length to be significantly greater than the  
contributions of each of the other variables (i.e., the 95% CI for the differences do  
not include zero). The metric pmvd shows brain mass and gestation length to make  
comparable contributions (i.e., the 95% CI for the differences include zero), but  
greater  contributions  than  any  of  the  other  variables.  The  metric  last  shows  
comparable contributions from gestation length, StrGr, and StrM, and the metric  
first  shows  comparable  contributions  from  all  variables,  except  EQ.  Perhaps  
surprisingly, the recursive tree displays body mass as the foremost contributor to  
variance  in  glia-neuron  ratio,  separating  large-bodied  catarrhines  from  small-
bodied platyrrhines, tarsiers, and strepsirrhines. In species with a large body mass  
(>4.7  kg),  StrGr  is  the  principal  determinant  of  glia-neuron  ratio,  whereas  in  
species  with  a  small  body  mass  (<4.7  kg),  gestation  length  is  the  principal  
determinant. All values in (i) and (ii) are log-transformed.
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0.539, upper CI = 0.927; R2= 0.381, p < 0.001) independent contrasts. In AS, body mass, brain mass, 

and gestation length scaled with significant positive exponents with glia-neuron ratio.  

Glia-neuron ratio scaled significantly against gestation length in carnivores for species mean data 

and independent contrasts, although in primates the relationship was only significant for independent 

contrasts, suggesting that the species mean data obscured grade shifts among major taxonomic groups 

within the primate dataset (Garland et al 1993). 

Stepwise AIC (Akaike's Information Criterion) multiple regressions showed (Table A3) glial cell 

density to be a significant predictor of neuronal density in AS (t = 5.160, p < 0.001), carnivores (t = 

2.607, p < 0.05), and 

primates (t = 4.470, p 

< 0.001), and 

neuronal density to 

be a significant 

predictor of glial cell 

density in AS (t = 

5.514, p < 0.001), 

carnivores (t = 2.272, 

p < 0.05), and 

primates (t = 4.385, p 

< 0.001). Pearson 

product-moment 

correlations between 

glial cell density and 

neuronal density 

supported results 

from the relative 

importance metrics 

for AS (r = 0.568, p 

< 0.001) and 

primates (r = 0.604, 

p < 0.001).

Figure 20: Significant differences in unplanned multiple comparisons following from  
Kruskal-Wallis tests are shown with asterisks, when the observed difference between two  
groups exceeded the critical difference, for mean values for neuronal density (c2=10.33,  
p=0.01) and glial cell density (c2=2.20, p=0.33) in CA1-3, and volumetric estimates of  
StrGr (c2=15.14, p=0.00) and StrMol (c2=28.72, p=0.00) of the dentate gyrus in three  
taxonomic groups. Bars (but not values) of neuronal density and glial cell density are  
presented as log(base 4)-transformed and bars of StrGr and StrMol are presented as  
log(base 10)-transformed. Abbreviations: StrGr, stratum granulosum; StrMol, stratum  
moleculare; SW, Shrew-to-Whale. 
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Stepwise AIC multiple 

regressions showed gestation 

length to be a significant 

predictor of glia-neuron ratio 

in AS (t-value = 4.63, p < 

0.001), carnivores (t-value = 

2.07, p < 0.05), and primates 

(t-value = -2.84; p<0.01). 

Recursive tree models 

supported these results for AS 

and carnivores (Figs. 19a-c). 

Relative importance metrics 

showed gestation length to be 

the principal contributor to 

variance in glia-neuron ratio in 

AS (30%) and carnivores 

(40%), and also in primates 

(15%) when neocortical 

volume was included as a 

regressor . 

Pearson product-moment 

correlations showed glia-

neuron ratio to be strongly positively correlated (r > 0.476, p < 0.05) with brain mass, body mass, and 

gestation length in AS and carnivores. In primates, brain mass was also shown to be a significant 

predictor of glia-neuron ratio (t = 3.04, p < 0.01). 

The CA subfields and the dentate gyrus 

Two-sample Kolmogorov-Smirnov tests showed significant differences between carnivores and 

primates in their distributions of StrGr volume (D = 0.460, p=0.007) and StrMol volume (D = 0.837, p 

= 0.000), and Kruskal-Wallis sum rank and comparison tests showed significant differences between 

SW and both carnivores and primates in StrGr, StrMol, and glia-neuron ratio (Fig. 20).

Figure  21:  Volumetric  estimates  of  the  stratum  granulosum  (solid)  and  
stratum  moleculare  (hollow)  are  presented  in  log-log  regression  plots  as  
functions of brain mass for AS (green), carnivores (red), and primates (black).  
The  slopes  and  y-intercepts  for  stratum  granulosum with  brain  mass  are  
statistically  similar  in  AS  (y  =  0.490x  +  8.86,  R2  =  0.712,  p  <  0.05),  
carnivores (y = 0.485x + 8.90, R2 = 0.478, p < 0.05), and primates (y =  
0.502x + 8.75, R2 = 0.546, p < 0.05); the slopes and y-intercepts for stratum  
moleculare with brain are also statistically similar in AS (y = 0.522x + 9.31,  
R2 = 0.655, p < 0.05), carnivores (y = 0.522x + 9.33, R2 = 0.421, p < 0.05),  
and primates (y = 0.525x + 9.21, R2 = 0.564, p < 0.05), demonstrating the  
conserved organization of the dentate gyrus with brain size across eutherian  
phylogeny.
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Both StrGr and StrMol scaled 

with significant exponents against 

brain mass and body mass for 

species mean data and 

independent contrasts in AS, 

carnivores, and primates (Fig. 

21). These exponents were not 

shown to be statistically different 

(p < 0.05). 

Stepwise AIC multiple 

regressions (Table A3) found 

StrGr to be a significant predictor 

of glia-neuron ratio in AS (t-value 

= 2.302, p = 0.025) and 

carnivores (t-value = 2.148, p = 

0.050), but these results were not 

supported by relative importance 

metrics (S Figs. 1b,h). 

Human predictions for the cellular hippocampus based on primates and other mammals

Old World and New World monkey species mean data and independent contrasts were used to 

generate log-log LS regression predictions of glial cell density on neuronal density (Fig. 22). The mean 

observed human value for glial cell density was not significantly different from the predicted value 

based on the non-human primate species mean LS regression of glial cell density against neuronal 

density (t = 6.034, p = 0.455). This prediction held within 95% PI for independent contrasts.

Non-human species mean data and independent contrasts were used to generate log-log LS 

regression predictions for glial cell density on neuronal density, and glia-neuron ratio on brain mass 

(Fig. 23). The mean observed human value for glial cell density fell within the 95% PI based on 

neuronal density (4%), but observed glia-neuron ratio fell outside the 95% PI based on brain mass (-

12%). These predictions held for independent contrasts.

Figure 22: The scaling in  CA1-3 of  glial  cell  density  as a function of  
neuronal  density  for  species  mean  data  in  primates.  The  dotted  line  
represents the LS regression lines fitted to non-human primates for glial  
cell density against neuronal density (y = 0.0.727x + 1.226, R2 = 0.261, p  
< 0.05); the solid line is fitted to independent contrasts mapped back into  
tip species space (y = 0.930x + 0.227, R2 = 0.185, p < 0.05), calculated  
to predict hypothetical species points attached to the branch leading to  
humans  by  pruning  humans  from the  tree  and rerooting  it  at  the  last  
common ancestor of humans and non-human primates.
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Mode of placentation and the hippocampus

The glia-neuron ratio was tested as functions of brain mass, body mass, EQ, gestation length, 

StrGr, and StrMol in placental groups (Table 7). Glia-neuron ratio was found to scale as a function of 

gestation length with significant RMA exponents in both haemochorial and endotheliochorial species 

for species mean data and independent contrasts. Epitheliochorial species showed significantly 

different RMA scaling exponents and y-intercepts for StrGr as a function of brain mass compared to 

both haemochorial and endotheliochorial species (Fig. 24). 

Group Dependent variable Independent variable Independent contrasts
RMA Lower 95% CI Upper 95% CI p RMA p

Epitheliochorial Glia cell density neuronal density 1.868 0.000 0.699 4.992 0.965 0.994 0.259 0.303
(n=8) -0.789 0.658 -0.420 -1.482 0.027 -0.772 0.668 0.091

-0.630 0.611 -0.323 -1.226 0.038 -0.673 0.658 0.096

Neuronal density -0.422 0.019 -0.159 -1.121 0.771 -0.825 0.646 0.054
-0.337 0.015 -0.127 -0.896 0.790 -0.722 0.601 0.070

Glia-neuron ratio -0.883 0.443 -0.406 -1.922 0.103 0.799 0.003 0.924
-0.705 0.417 -0.319 -1.557 0.117 0.700 0.001 0.958

brain mass (g) -0.495 0.228 -0.204 -1.205 0.278 0.403 0.049 0.634
body mass (kg) -0.308 0.255 -0.128 -0.739 0.247 0.255 0.098 0.495
gestation length (d) -1.637 0.935 -1.226 -2.186 0.000 1.131 0.024 0.739
EQ 1.464 0.184 0.587 3.650 0.337 -1.099 0.323 0.183

Endotheliochorial Glia cell density neuronal density 1.010 0.079 0.654 1.559 0.206 1.080 0.063 0.271
(n=22) 0.690 0.012 0.440 1.080 0.629 0.663 0.057 0.299

0.669 0.010 0.427 1.049 0.655 0.634 0.049 0.333

Neuronal density -0.683 0.261 -0.462 -1.010 0.015 -0.614 0.238 0.025
-0.663 0.268 -0.449 -0.978 0.014 -0.587 0.220 0.032

Glia-neuron ratio 0.823 0.271 0.558 1.213 0.013 0.777 0.346 0.005
0.798 0.269 0.541 1.178 0.013 0.743 0.313 0.008

brain mass (g) 0.432 0.333 0.297 0.626 0.005 0.555 0.292 0.011
body mass (kg) 0.317 0.360 0.220 0.457 0.003 0.360 0.349 0.005
gestation length (d) 1.039 0.514 0.754 1.430 0.000 1.232 0.291 0.012
EQ 1.435 0.027 0.916 2.247 0.468 -1.747 0.023 0.516

Haemochorial Glia cell density neuronal density 0.676 0.444 0.516 0.885 0.000 -0.034 0.086 0.116
(n=34) -0.774 0.152 -0.556 -1.078 0.025 -0.824 0.122 0.054

-0.740 0.144 -0.531 -1.033 0.029 -0.791 0.156 0.028

Neuronal density -1.147 0.484 -0.884 -1.488 0.000 -1.419 0.214 0.009
-1.096 0.455 -0.839 -1.432 0.000 -1.514 0.170 0.021

Glia-neuron ratio 0.859 0.335 0.640 1.152 0.000 0.829 0.079 0.133
0.821 0.314 0.609 1.107 0.001 0.773 0.016 0.505

brain mass (g) 0.427 0.478 0.329 0.555 0.000 -0.041 0.108 0.076
body mass (kg) 0.349 0.413 0.264 0.460 0.000 0.374 0.112 0.070
gestation length (d) 1.342 0.508 1.040 1.731 0.000 1.962 0.158 0.033
EQ 1.535 0.143 1.110 2.122 0.030 -1.787 0.001 0.851

Table 7: Slope estimates for scaling relationships among cell densities in CA1-3 (cells/mm³), volumetric estimates of the dentate gyrus, and anatomical variables
                        Species mean data

R2 R2

StrGc  (µm³)
StrMol  (µm³)

StrGc  (µm³)
StrMol  (µm³)

StrGc  (µm³)
StrMol  (µm³)

StrGc  (µm³)
StrMol  (µm³)

StrGc  (µm³)
StrMol  (µm³)

StrGc  (µm³)
StrMol  (µm³)

StrGc  (µm³)
StrMol  (µm³)

StrGc  (µm³)
StrMol  (µm³)

StrGc  (µm³)
StrMol  (µm³)
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Figure 23: (top) The 
scaling in CA1-3 of glial 
cell density as a function 
of neuronal density and 
(bottom) glia-neuron ratio 
as a function of brain 
mass for species mean 
data. The dotted lines 
represent the LS regressions 
fitted to non-human 
species for glial cell 
density against neuronal 
density (y=0.814x + 
0.975, r=0.664, p=0.000) 
and glia-neuron ratio 
against brain mass 
(y=0.469x – 0.789, 
r=0.610, p=0.000). The 
solid lines represent the LS 
regressions fitted to 
independent contrasts 
mapped back into tip 
species space, calculated 
to predict a hypothetical 
species point attached to 
the branch leading to 
humans by pruning 
humans from the tree and 
rerooting it at the last 
common ancestor of 
humans and non-human 
mammals. 
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Figure 24: A log-log regression plot of stratum granulosum (solid lines) as a function of brain mass shows similar  
RMA exponents for (black) haemochorial (slope = 0.504, lower CI = 0.407, upper CI = 0.616, R2 = 0.593, p <  
0.05) and (blue) endotheliochorial (slope = 0.505, lower CI = 0.410, upper CI = 0.620, R2 = 0.489, p < 0.05)  
species, but significantly different exponents for (red) epitheliochorial (slope = 0.315, lower CI = 0.222, upper CI =  
0.401, R2 = 0.887, p < 0.05) species. RMA exponents for stratum moleculare (dotted lines) as a function of brain  
mass, however, show similar exponents for haemochorial (slope = 0.525, lower CI = 0.427, upper CI = 0.645, R2 =  
0.589, p < 0.05), endotheliochorial (slope = 0.520, lower CI = 0.379, upper CI = 0.713, R2 = 0.497, p < 0.05), and  
epitheliochorial (slope = 0.419, lower CI = 0.263, upper CI = 670, R2 = 0.803, p < 0.05) species. The regressions  
also revealed significantly different y-intercepts between epitheliochorial species and both haemochorial (p = 0.018)  
and endotheliochorial (p = 0.031) for StrGr, but not for StrMol, as a function of brain mass.
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DISCUSSION II

I have demonstrated that the scaling of glia to neurons in the hippocampal subfields is conserved 

in mammals. Likewise, the scaling of glial cell and neuronal density, glia-neuron ratio, and volumetric 

estimates of the dentate gyrus against brain mass, body mass, and gestation length are also conserved. 

Humans did not display significant deviations from mammalian predictions. Considering the largely 

conserved circuitry, cytoarchitecture, and function of the hippocampal formation in mammalian 

evolution, this is not surprising. Minor grade-shifts in the scaling of glial cell density with neuronal 

density between primates and other mammals (Fig. 25), as well as significant differences in mean 

values of neuronal density between carnivores and primates, show that conserved organization and 

functionality in the hippocampus has not proscribed quantitative modification. However, the central 

importance of the hippocampus (e.g., to respiration) it seems has resulted in its safeguarding against 

disruptive evolutionary changes. More interestingly, gestation length was consistently shown to be a 

stronger predictor than brain or body mass of cellular and volumetric properties of the hippocampus; 

and mode of placentation clearly figures in the regulation of these properties. In agreement with 

evidence demonstrating an effect of prenatal nutrition on hippocampal development (Guesry 1998; 

Bedi 2003; Niculescu & Lupu 2009), I propose that the conserved composition of the hippocampus 

observed in my data is a consequence of differentially evolved maternal investment strategies in 

different mammalian taxa, rather than positive selection on safeguarding the hippocampus specifically. 

Since the hippocampus develops early in ontogeny, and despite its major role in behavior, it appears 

largely resistant to evolutionary modification and therefore its closely regulated quantitative cellular 

distributions may be a minimum production of maternal investment. As such, my data demonstrate a 

critical evolutionary role for prenatal development in the maintenance and evolution of neurogenetic 

scheduling. 

 Fetal development regulates evolution of the hippocampus

The mean values of glia-neuron ratios in carnivores and primates were not shown to be 

significantly different across taxonomic groups. Predictions for glia density in humans as a function of 

neuron density based on a LS regression of AS showed that humans do not deviate from the 

mammalian pattern. Volumetric estimates of the dentate gyrus were shown to scale isometrically with 

glia-neuron ratio in AS and contribute significantly more to variance in glia-neuron ratio than either 
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brain or body mass. These data 

indicate that the cytoarchitecture 

and structure of the hippocampus 

are conserved in mammals. 

However, gestation length was the 

greatest contributor to variance in 

glia-neuron ratio in AS, and 

neuronal density scaled as a 

function of StrGr volume and brain 

mass with a considerably (2-3 

times) steeper slope in 

haemochorial than epitheliochorial 

species. Furthermore, StrGr was 

shown to scale as a function of 

brain with a significantly different 

slope in epitheliochorial compared 

to haemochorial or 

endotheliochorial species.

Prenatal development, as effected 

by gestation length and mode of 

placentation, may alter evolution of 

the hippocampus. Studies of maternal nutrition during gestation have demonstrated that malnutrition 

may have a specific affect on development of the hippocampus (Gordon 1997; Guesry 1998; Mattson 

2003; Mattson & Shea 2003; Cserjesi et al 2007), manifested in a decreased proliferation of neural 

precursors, depressed adult population of granule cells, and retarded neuronal differentiation in the 

dentate gyrus (Bedi 2003; Tozuka et al 2009). There is further evidence that prenatal nutrition affects 

the population of apoptotic cells in the CA subfields of the hippocampus (Niculescu & Lupu 2009). It is 

possible, therefore, that the resulting deficit in cells may be due to changes in neurogenetic scheduling 

(i.e., the timing of cell-cycles). Similar studies of the cerebellum, testing whether maternal malnutrition 

during gestation affects adult neuronal populations, have only produced ambiguous results (Persson & 

Sima 1975; Conradi & Muntzing 1985; Bedi 2003), indicating that the hippocampus may be especially 

Figure  25:  Log-log  regression  of  neuronal  density  with  glial  cell  
density  for  species  mean  data  in  primates  (solid  line)  and  other  
mammals (dashed line). Although there is no significant difference in  
the RMA slopes for primates (slope = 1.052, lower CI = 0.792, upper  
CI = 1.396, R2=0.365, p < 0.05) and other mammals (slope = 0.654,  
lower CI = 0.465, upper CI = 0.921, R2 = 0.204, p < 0.05), there is a  
significant grade-shift between the primates (y-intercept= -0.307, lower  
CI=-1.030, upper CI=0.350) and other mammals (y-intercept = 1.555,  
lower CI = 0.784, upper CI = 2.191, p < 0.05).
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vulnerable to changes in prenatal nutrient transfer. One explanation, which would help resolve a 

specific role for placentation in hippocampal development, is the differential production of leptin in 

different taxa. Leptin is a protein hormone produced by adipose tissue and placenta that contributes to 

the regulation of maternal energy balance (Zhang et al 1994; Pelleymounter et al 1995; Trayhurn et al 

1998), affects fetal growth and development (Ashworth et al 2000), and is essential, at least in early 

stages of gestation (Mounzih et al 1998), to successful parturition in mammals. Leptin has also been 

shown to be expressed in the hippocampus (Louis & Myers 2007) and even affect long-term 

potentiation in CA1 (Oomura et al 2006). As placental leptin expression and secretion are species-

specific traits that may have been adapted for different levels of adiposity during gestation in different 

species (Zhao et al 2003), I suggest that the diversity of fat storage necessary for different modes of 

placentation has influenced selection for increased (or decreased) expression of leptin. If, as the above 

evidence suggests, leptin plays an important role in development of the hippocampus, then mode of 

placentation, which determines the fat storage required for gestation (Enders & Carter 2004) and thus 

the necessary level of leptin expression required for parturitional success in a species (e.g., Kind et al 

2005), may directly influence the evolutionary development of the hippocampal formation. These 

results more generally suggests that selection for a biological process in the placenta during evolution 

(e.g., longer gestation length or decreased placental invasiveness) affects brain development, perhaps 

through an influence on the timing of early cell-cycles. 
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CHAPTER 7 
DEVELOPMENTAL CONSTRAINTS 

The mammalian brain is composed of structurally distinct cell groups, which are configured 

into topographical maps underlying sensorimotor and cognitive functions (Kaas 1982; Passingham et  

al 2002; Krubitzer 2009). While it is clear that some species are behaviorally adapted and display 

remarkable specializations, and that certain brain areas are devoted to mediating quite specific 

behaviors, the degree to which one region can evolve independently of functionally unrelated regions is 

poorly understood. On one hand, it has been suggested that the size of different brain regions evolves in 

concert due to constraints of neural developmental timing (Finlay & Darlington 1995). In contrast, it 

has been proposed that developmental constraints are not sufficient to overpower the ability of regions 

to evolve independently (Barton & Harvey 2000; de Winter & Oxnard 2001). 

Comparative studies of connectivity and circuitry in the mammalian brain confirm many of the 

claims of concerted evolution. Structural components in the trans-cerebellar loops, for example, have 

been observed to covary in size across species (Voogd 2003). Similarly, reduction in the amount of 

retinal afferents has been shown to cause corresponding reductions in the lateral geniculate nucleus and 

visual cortex (e.g., Rakic et al 1991; Cooper et al 1993b; Dehay et al 1996b). Epigenetic population-

matching, wherein competition for some trophic factor produced by a target region generates an equal 

number of available target cells to projection neurons (Katz & Lasek 1978; Linden 1994; Yeo & 

Gautier 2004), may, in part, explain these phenomena. However, patterns predicted by epigenetic 

population-matching are not observed universally – different species tend to elaborate pathways from a 

common source differently (Northcutt & Wulliman 1988) – and, without developmental data, it is 

impossible to say that the population-matching is epigenetically controlled (see Bunker & Nishi 2002). 

It may be that epigenetic cascades operate successfully in linear circuits, but not in reticulate circuits, 

which is why an examination of the available evidence suggests that the structure of region sizes in the 

mammalian brain is neither completely constrained by developmental timing nor completely free to 

evolve independently. 

Volumetric size, however, is a poor estimate of the cellular composition of brain tissue 

(Azevedo et al 2009). Increasing evidence for phyletic variation in the cellular organization of 

homologous regions of mammalian brains (e.g., Preuss & Coleman 2002; Hammock & Young 2005; 

Hutsler et al 2005; Sherwood & Hof 2007) has demonstrated that interspecific variation in factors 

underlying brain size variation (e.g., cellular density, degree of dendritic arborization, and cell soma 
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size) may also reflect evolutionary adaptations within lineages in conjunction with morphological or 

volumetric changes. Comparing cellular properties in disparate brain regions across taxa provides a 

new perspective to explore the extent to which developmental constraints act on the evolving 

mammalian brain.

My aim here was to test, using the materials and methods outlined in chapters 5 and 6, in 

addition to granular cell volume estimates in the cerebellum,  whether the density of neurons and glia 

co-varies across different regions of the brain among mammalian species. The regions examined here – 

the primary visual cortex and subfields of the hippocampal formation – are not directly interconnected 

with one another and therefore may be free to evolve independently. From evidence that the 

mammalian brain is loosely modularized (see Krubitzer 2007), such that one region is rarely isolated 

for specialization at the expense of others, but that the design of modularization itself can be selected, it 

is likely that the degree to which certain brain regions must evolve in concert and can evolve 

independently will carry a deep phylogenetic signal. In the current study, I compared neuronal and glial 

cell densities in the primary visual cortex (V1) and subfields of the hippocampus proper (CA1-3) in 37 

primate species, 21 carnivore species, and 14 other mammalian species (spanning 11 orders). I provide 

evidence for developmental constraints controlling the concerted evolution of neuronal and glial cell 

densities in disparate regions of the mammalian brain, but also find evidence of specialization in the 

proportions of these different cells along the primate lineage.

Cerebellar function and evolution
In order to understand the implication of findings based on scaling relationship between the 

cerebellum and cortical structures, it is necessary to briefly review what the cerebellum has been 

observed to do, and how it has adapted in mammalian evolution.

At the gross anatomy level (Fig. 26), the cerebellum consists of a median vermis and two lateral 

hemispheres (Braitenberg et al 1997; Dom & Strick 2003; Kelly & Strick 2003; Rilling 2007). The 

main divisions of the cerebellum are the corpus cerebelli and cerebellar auricle, which are formed by 

the cerebellar cortex and, sometimes, a distinct layer of white matter. The cerebellar cortex has three 

layers: outer molecular layer, middle Purkinje layer, and inner granular layer (Fig. 27). The main 

function of the cerebellum appears to be motor-related (Ghez & Thach 2000; Sultan & Glickstein 

2007), and it has been shown to be involved in reflex modulation (Robinson 1976; De Zeeuw et al 

1998; Kishimoto & Kano 2006; Timmann & Daum 2007) and accurate prediction of goal-oriented 
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tasks via control of saccadic movements (Masao 1984; Takagi et al 1998). The parallel encephalization 

of the dentate nucleus of the cerebellum and the frontal cortex of the cerebrum observed in 

phylogenetic and ontogenetic development in primates (Leiner et al 1986 1989) has lead to 

suppositions that the cerebellum may have a role beyond motor function. While clinical signs of 

impairment to cortico-cerebellar networks in patients with cerebellar lesions have only been minor 

compared to patients with damage to cortical areas (Timmann & Daum 2007), suggesting that the role 

of the cerebellum is primarily related to motor function, non-motor functional hypotheses for the 

cerebellum now include spatial cognition, visuo-spatial problem solving, verbal fluency, procedural 

learning, syntax, timing, semantic phonological word retrieval, sensory discrimination, and abstract 

reasoning (Dow 1988; Bower 1997; Leiner et al 1997; Desmond & Fiez 1998; Schmahmann 1998; 

Ghez & Thach 2000; Rapoport et al 2000; Marien et al 2001; Ivry & Spencer 2004; Ito 2005; Thach 

2007). Based on these motor and non-motor hypotheses of cerebellar function, what assumptions can 

we make when comparing cerebral and cerebellar structures across phylogenies? 

Work on cellular scaling in the cerebellum and cerebral cortex have, it appears, revealed some 

general rules. The relative size of the cerebellum fails to keep pace with the relative size of the cerebral 

cortex as the brain gets larger with phylogeny (Clark et al 2001; Sultan 2002). In Eulipotyphla, 

primates, and rodents, the cerebellum and cerebral cortex increase in absolute size as the brain 

encephalizes; but, juxtaposed to the cerebral cortex, the relative size of the cerebellum remains static 

Figure 26. Diagram of the flattened cerebellar surface. 
It is  is divided into lobes and lobules (I-X) by five deep 
fissures (the primary fissure (PrF), the posterior 
superior fissure (SPF), the horizontal fissure (HF), the 
pre-pyramidal fissure (PpF), and the posterolateral 
fissure (PLF)): the flocculonodular lobe on the ventral 
surface, which receives input from the primary 
vestibular afferents and governs eye movements and 
body equilibrium during stance and gait; the vermis, 
which occupies the midline of the cerebellum, has its 
primary inputs from spinocerebellar tracts carrying 
somatosensory information from proximal and axial 
body parts; the intermediate portions of the 
hemispheres lateral to the vermis, which relay 
information to interposed cerebellar nuclei to affect 
both ascending and descending efferents to nuclei 
involved in the coordination of distal limbs and 
muscles; and the lateral hemispheres, whose main 
source of afferents is the cerebral cortex and whose 
main output is directed to the dentate nucleus, which 
projects to the parvicellular portion of the red nucleus 
and ventrolateral thalamus. Adapted from Habas et al 
(2009).



113

Figure 27: The outer molecular layer and inner granular layer of the cresyl violet-stained 
cerebellum are easily distinguished in (a) and (b). The Purkinje cells (arrows), which 
constitute a middle layer, become distinct from the granule cells in (c) and (d).  (e) granule 
cell layer of the cerebellum was distinguished from the white matter by dramatic changes in 
cell type and density. The volume of the granule cell layer of the cerebellum was estimated 
using Cavalieri's method.  taken at the National Museum of Health and Medicine, 
Washington, D.C (a, Potos flavus, 1x objective; c, Macaca mulatta, 10x objective) and 
Institute of Psychiatry, King's College London (b, Mus musculus, 4x objective; d, Mus 
musculus, 40x objective).
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(Stephan et al 1981; Clark et al 2001; Sultan 2002). Nonetheless, the vast majority of neurons in the 

mammalian brain are in the cerebellum – 60% of all neurons in the mouse, small shrew, and marmoset; 

70% in the rat, guinea pig, and macaque; and 80% in the common agouti, galago, and human 

(Andersen et al 1992; Herculano-Houzel et al 2006, 2007; Azevedo et al 2009; Sarko et al 2009). So, 

contrary to the volumetric preponderance of the cerebral cortex in encephalized brains – and despite the 

different cerebral neuronal scaling rules observed in different mammalian orders (Herculano-Houzel et  

al 2006, 2007) – the number of neurons in the cerebellum covaries with the number of neurons in the 

cerebral cortex at a rate of about four to one, regardless of brain size (Herculano-Houzel 2010). One 

explanation of this relationship points to the functional importance of long-range connectivity through 

subcortical (neuron-bare) white matter for the operation of associative networks in the cerebral cortex 

(Wen & Chklovskii 2005) compared to the mostly short-range connections in the cerebellar (neuron-

full) gray matter (Bush & Allman 2003), which causes neocortical white matter to increase faster than 

cerebellar white matter in larger brains (Herculano-Houzel et al 2006; Sarko et al 2009). This has not 

been quantitatively tested. 

Although these scaling relationships are observed in primates (Herculano-Houzel 2010), 

hominoids appear to have altered the relationship (MacLeod et al 2003; Rilling 2006; Balters et al 

2009). In anthropoids, cerebellar size is largely explained by body size, and cerebellar contrasts are 

significantly correlated with neocortical contrasts (Winter & Oxnard 2001). However, there is a clear 

grade shift between hominoids and other anthropoids. That is, hominoid evolution involved larger 

increases in cerebellar size (mostly in the hemispheres) than predicted by increases in cerebral cortical 

size in anthropoids (MacLeod et al 2003). Furthermore, in hominoids, the dentate nucleus consists of a 

plesiomorphic dorsomedial part and an apomorphic ventrolateral part (Leiner et al 1991). It is 

suggested that the ventrolateral part of the hominoid dentate nucleus plays a role in cognition. Although 

the ventrolateral dentate nucleus appears to project to non-motor regions (e.g, the frontal lobe), 

adaptive non-motor hypotheses remain as robust as our markedly tenuous (see above) understanding of 

the role of the cerebellum in cognition. 

So, why have hominoids evolved larger-than-expected cerebella? Some authors point to the 

complexity of movement of hominoids (Povinelli & Cant 1995; MacLeod et al 2003). Compared to 

anthropoids, hominoids exhibit more complex pre-shaping of their hands when reaching for objects 

(Christel 1993; Christel et al 1998), exercise pre-syntactical motor planning (Ott et al 1994), and use 

corrective guidance during the execution of foraging tasks (Byrne 2004). These movements are not 
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only complex in themselves, but require planning. Quantitative differences have been observed among 

hominoids, too. After adjusting for body weight, the human cerebellum (and particularly dentate 

nucleus) is larger than expected for a hominoid of our body size (Matano & Hirasaki 1997; Rilling & 

Insel 1998; Semendeferi & Damasio 2000). Most of this size increase in the dentate nucleus has 

occurred in the ventrolateral region (Matano 2001). However, adjusted for cerebral cortical size, the 

human cerebellum is smaller than expected for a hominoid of our cerebral cortical volume. That is, 

humans fall below the hominoid regression line for cerebral cortical-cerebellar volume. Since humans 

do not have a disproportionately small cerebellum in absolute terms or when regressed on other brain 

regions (Deacon 1998; Rilling & Insel 1999), it is likely that the cerebral cortex enlarged at a faster rate 

than the cerebellum in human evolution (and unlikely that the cerebellum shrunk). Rilling & Seligman 

(2002) suggest that the extra-allometric expansion of the temporal lobe, a region that is not intimately 

connected with the cerebellum, may explain how the cerebral cortex was structurally able to enlarge at 

a faster rate than the cerebellum. Cognitive explanations of the human deviation from the hominoid 

pattern are plentiful (e.g., Gallup 1970; Tomasello & Call 1997; Tomasello et al 2003; Walter & 

Joanette 2007), but the evidence remains unconvincing (see Glickstein 2006). 
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ANALYSIS III

Volumetric estimates of the cerebellum

Methods used to quantify neuron and glia densities in the primary visual cortex and hippocampus 

proper and volumes of the dentate gyrus are outlined in chapters 5 and 6. Methods for processing brain 

tissue are also outlined in chapters 5 and 6. 

Volumetric estimates of the granule cell layer of the cerebellum (CrbGc) were determined using 

Cavalieri's direct volume estimate (Fig. 27). An average of twenty sections were sampled for each 

individual. The cross-sectional area of the tissue was delineated with 10x objective  (NA 0.25, air) in 

every 20th serial section. Each delineated region was then projected onto a computer screen at a known 

magnification, and a virtual point-grid of evenly spaced points was superimposed onto the region. The 

number of points falling on the region were counted using a systematic 'paint' tool. The distance 

between points on the grid was determined by pilot studies on mouse and human brains and set at 60 

µm for the CrbGc. The thickness of sections cut from the microtome ranged from 25 - 100 µm, and 

mounted section thickness was measured in the z-plane of four randomly selected mounted sections 

using a 63x objective (NA 1.4, dry). Analysis of tissue samples was performed under brightfield 

microscopy with StereoInvestigator (MBF Bioscience, Willington, VT, USA). 

 Estimates of the coefficient of error were calculated with the Gundersen–Jensen estimator 

(Gundersen & Jensen 1987; Gundersen et al 1999) and held below 0.8 ± 0.1 for all analyses. For 

applications of Cavalieri's direct volume estimate, see Roberts et al (1994), Garcia-Fiñana et al (2003), 

and Sonmez et al (2010).

Statistical analyses are outlined in Chapter 5 (Analysis I) and 6 (Analysis II).
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RESULTS III

The stereological results for all species are listed in Table A1a,b. In each taxonomic group 

(Table 1), I investigated allometric scaling relationships among cellular densities in the primary visual 

cortex (V1) and CA subfields of the hippocampus (CA1-3), volumetric estimates of the granule cell 

layer (StrGr) and molecular layer (StrMol) of the dentate gyrus, volumetric estimates of the granule cell 

layer of the cerebellum (CrbGc), brain mass, body mass, encephalization quotient (EQ), and gestation 

length. I additionally investigated scaling relationships with cerebellar and neocortical volume in 

primates. Scaling exponents generated by RMA line-fitting for species mean data and independent 

contrasts are presented in Table 8 along with 95% confidence intervals (CI). Recursive partitioning 

based on ANOVAs, stepwise AIC multiple regression, and the relative importance metrics lmg, pmvd, 

first, and last were used to isolate the best predictor variables for and determine the proportional 

contributions of regressors to cellular densities in V1 and CA1-3 and volumetric estimates of StrGr, 

StrMol, and CrbGc. 

The All species (AS) group consists of 31 species, spanning 13 orders, and is considered 

representative of Eutheria (Table 1). The AS group includes the 14 species sampled that are neither 

primates nor carnivores, as well as a systematic random sampling of primate and carnivore species that 

was limited to 3 species in any taxonomic family to avoid bias towards any taxa. 

Hypotheses and predictions

Recent studies have shown that the relationship of neuronal density in the cerebrum to the 

cerebellum does not at all reflect the relationship of the gross morphology of the two regions (Azevedo 

et al 2009; Sarko et al 2009; Herculano-Houzel 2010). As investigations into the evolution of multiple 

brain regions have focused almost exclusively on gross morphology, it is not known whether the 

relationship of glia to neurons or the evolutionary proliferation of neurons in one area of the brain is 

constrained or influenced by the dynamics in another area. I have specifically designed this project to 

test just that. The regions tested here – the primary visual cortex and hippocampal proper – are not 

intimately connected and therefore should, by merit of their loose correspondence, be free to evolve 

independently of one another. However, even if a tight correlation is not expected, the degree to which 

the cytoarchitecture of any brain region can evolve independently is unknown. I predict that the co-

evolution of the these regions will conform to allometric scaling expectations, but that those 
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expectations will vary across taxonomic groups. Since taxa are rarely observe to isolate one region for 

selection at the expense of others, and that modules of the mammalian brain are regulated by 

developmental programs which can themselves be adapted, I expect quantitative differences in the co-

evolution of different brain regions to be found between, but not within, orders.

Regressors of the cerebellum

CrbGc volume was tested as an independent variable against glia-neuron ratio in V1 and CA1-3 

and both volumetric estimates of the dentate gyrus (Table 8). In carnivores, all scaling relationships 

held for species mean data and independent contrasts, whereas in AS only glia-neuron ratio in CA1-3 

and StrGr volume scaled significantly with CrbGc for species mean data and independent contrasts. In 

primates, both volumetric estimates of the dentate gyrus, but glia-neuron ratio in neither region, scaled 

significantly with CrbGc volume for species mean data and independent contrasts. Significant slopes 

were not shown to be statistically different or grade-shifted between groups (Fig. 28).

 

Dependent variable Independent variable Independent contrasts
RMA Lower 95% CI Upper 95% CI p RMA Lower 95% CI Upper 95% CI p

AS 0.923 0.127 0.733 1.215 0.006 0.728 0.134 0.604 0.925 0.005
(n = 31) Neuron density in V1 Neuron density in CA1-3 0.929 0.135 0.754 1.145 0.003 0.706 0.227 0.572 0.932 0.000

1.120 0.127 0.953 1.316 0.004 0.955 0.142 0.754 1.270 0.019

Carnivores 0.923 0.663 0.695 1.226 0.000 0.919 0.422 0.781 1.121 0.003
(n = 20) Neuron density in V1 Neuron density in CA1-3 0.922 0.572 0.671 1.268 0.000 0.997 0.292 0.808 1.246 0.025

1.11 0.759 0.871 1.410 0.000 1.183 0.685 0.994 1.467 0.000

Primates 0.829 0.017 0.584 1.176 0.457 -0.677 0.000 -0.528 -0.840 0.933
(n = 34) Neuron density in V1 Neuron density in CA1-3 0.640 0.000 0.450 0.911 0.955 0.624 0.078 0.499 0.805 0.142

-0.705 0.002 -0.496 -1.003 0.815 0.697 0.009 0.537 0.906 0.616

Table 9: Slope estimates for scaling relationships based on cell densities (cells/mm3) in CA1-3 and V1
Taxa                         Species mean data

R2 R2

Glia-neuron ratio in V1 Glia-neuron ratio in CA1-3

Glia density in V1 Glia density in CA1-3

Glia-neuron ratio in V1 Glia-neuron ratio in CA1-3

Glia density in V1 Glia density in CA1-3

Glia-neuron ratio in V1 Glia-neuron ratio in CA1-3

Glia density in V1 Glia density in CA1-3

Independent contrasts
Independent variable Dependent variable RMA Lower 95% CI Upper 95% CI p RMA Lower 95% CI Upper 95% CI p

AS 0.307 0.707 0.204 0.461 0.000 0.497 0.428 0.395 0.626 0.000
(n=31) 0.455 0.653 0.337 0.614 0.000 0.617 0.227 0.481 0.792 0.685

0.521 0.614 0.406 0.668 0.000 0.810 0.151 0.657 0.998 0.012
0.537 0.594 0.420 0.687 0.000 0.821 0.161 0.666 1.011 0.199

Carnivores 0.478 0.537 0.377 0.606 0.000 0.650 0.220 0.423 0.999 0.006
(n=20) 0.518 0.492 0.412 0.650 0.000 0.754 0.459 0.489 1.163 0.002

0.554 0.417 0.438 0.700 0.000 0.823 0.056 0.551 1.228 0.037
0.611 0.352 0.490 0.761 0.000 0.865 0.036 0.592 1.262 0.011

Primates 0.395 0.584 0.290 0.538 0.000 0.579 0.261 0.399 0.841 0.785
(n=34) 0.472 0.422 0.336 0.663 0.000 -0.846 0.027 -0.571 -1.254 0.354

0.602 0.363 0.472 0.769 0.000 0.582 0.336 0.424 0.798 0.003
0.631 0.372 0.506 0.787 0.000 0.910 0.014 0.664 1.247 0.000

Table 8: Slope estimates for scaling relationships between the granule cell layer of the cerebellum (µm³) and cerebral properties
                        Species mean data

Taxa R2 R2

CrbGc Glia-neuron ratio in V1
Glia-neuron ratio in CA1-3
StrGr  (µm³)
StrMol  (µm³)

CrbGc Glia-neuron ratio in V1
Glia-neuron ratio in CA1-3
StrGr  (µm³)
StrMol  (µm³)

CrbGc Glia-neuron ratio in V1
Glia-neuron ratio in CA1-3
StrGr  (µm³)
StrMol  (µm³)
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V1 and the hippocampal formation 

In AS and carnivores, glia-neuron 

ratio, neuronal density, and glial cell 

density in V1 were shown to scale 

isometrically with glia-neuron ratio, 

neuronal density, and glial cell density in 

CA1-3, respectively, for species mean 

data and independent contrasts (Fig. 29). 

In primates, none of the variables in V1 

scaled significantly with any of the 

variables in the hippocampus for species 

mean data or independent contrasts 

(Table 9).

Pearson product-moment 

correlations (PMCC) showed glial cell 

density (R2 = 0.537, p = 0.007) in V1 and 

CA1-3 and neuronal density (R2 = 0.498, 

p = 0.013) in V1 and CA1-3 to be 

significantly correlated in AS. In carnivores, glia-neuron ratio (R2 = 0.814, p = 0.000), neuronal density 

(R2 = 0.751, p = 0.000), and glial cell density (R2 = 0.862, p = 0.000) in V1 and CA1-3 showed strong 

linear dependence. PMCC showed no significant correlations between V1 and CA1-3 in primates. 

In AS, stepwise AIC multiple regression (Table A4) showed only glial cell density in CA1-3 (t = 

2.979, p = 0.004) and neuronal density in V1 (t = 2.906, p = 0.005) to be significant predictors of glial 

cell density in V1. Likewise, relative importance metrics and the recursive tree model revealed that 

neuronal density in V1 was the principal contributor and glial cell density in CA1-3 the secondary 

contributor to variance in glial cell density in V1 (see Supplemental Figs. 1a-r). In carnivores, 

hippocampal variables were shown to be strong predictors of V1 variables. Stepwise AIC multiple 

regressions showed glia-neuron ratio in CA1-3 to be the greatest predictor of glia-neuron ratio in V1 (t 

= 4.477, p = 0.001) and glial cell density in CA1-3 to be the greatest predictor of glial cell density in 

V1 (t = 7.429, p = 0.000). Relative importance metrics and recursive tree models strongly supported 

these results (see Supplemental Figs. 1a-r). In primates, no metric showed variables in V1 and CA1-3 

Figure 28: Log-log regression plots of StrGr volume as a function  
of CrbGc volume shows the y-intercept to be grade-shifted  
slightly, but not significantly, downwards in primates (y = 2.534,  
lower CI = 0.804, upper CI = 4.264, p = 0.005) compared to  
carnivores (y = 3.196, lower CI = 1.645, upper CI = 4.747, p =  
0.000) and AS (y = 3.560, lower CI = 2.043, upper CI = 5.077, p  
= 0.000). The slopes, too, are statistically similar (Table 8).
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to significantly predict or contribute to variance in one another.

Figure 29: Log-log regression plots of (a) 
glia-neuron ratio, (b) neuronal density, 
and (c) glial cell density in CA1-3 and V1 
for carnivores and AS. RMA exponents 
for species mean data and independent 
contrasts are roughly isometric for all 
plots and are presented in Table 8.
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DISCUSSION III

Most comparative studies have focused on the evolutionary relationships among different brain-

region volumes (Jerison 1973; Gould 1975; Stephan et al 1981; Finlay & Darlington 1995; Barton & 

Harvey 2000; Clark et al 2001; Lefebvre et al 2004; Yopak et al 2010), however, no studies have yet 

considered the coordinated evolution of cellular distributions in disparate brain regions. As recent 

evidence has confirmed that the volume and neuronal population in a given brain region show 

phylogenetically variable relationships to one another (Herculano-Houzel et al. 2006, 2007), 

investigating species diversity at the cellular level can help identify evolutionary physiological 

constraints acting on the mammalian brain. My data revealed significant relationships between neurons 

and glia in the primary visual cortex (V1) and hippocampal subfields (CA1-3) in mammals, that appear 

evolutionarily derived in primates (Fig. 30). Specifically, primates showed no significant scaling 

relationship between neurons and glia in V1 and CA1-3. I propose that the pattern observed in non-

primates is indicative of constraints acting on evolutionary processes affecting mammalian brain 

development, and that the alteration of that pattern observed in primates represents a removal or 

relaxation of certain constraints. It is possible, for example, that evolutionary adaptations in one brain 

region in primates have influenced certain neurogenetic mechanisms, such as apoptosis (see Lietzau et  

al 2009), and thus affected late-stage cell proliferation in other regions. As an induction of evolutionary 

change, the removal or relaxation of constraints may be a condition for adaptation.

Divorcing the cerebrum and the cerebellum

My data showed the granule cell layers of the cerebellum and dentate gyrus to scale with 

significantly similar slopes in all taxonomic groups, indicating a conserved relationship between these 

regions across the eutherian phylogeny. However, while both AS and carnivores showed significant and 

similar allometric relationships between the cerebellum and neocortex for species mean data and 

independent contrasts, no such relationship existed for primates (Table 8). This difference may indicate 

a developmental dissociation along the primate lineage between expansion of the cerebellum and 

neocortex. 

In human evolution, a hyperallometric expansion of the temporal and frontal lobes contributes 

to the disproportionate enlargement of the neocortex relative to the cerebellum (Rilling & Seligman 

2002). Adapted independence of the these cortical areas from the rest of the cerebrum early in primate 
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evolution may explain the derived relationship observed here between the cerebellum and neocortex. 

But inferring evolutionary patterns from correlations between traits absent of identifying selective 

pressures may lead to erroneous conclusions. While relationships may indicate mechanistic constraints 

limiting evolutionary divergence (Blows & Hoffman 2005), the covariation of traits should not 

presumptively be considered the result of parallel evolution or even of one trait evolving as a correlated 

Figure 30: Glia-neuron ratios in V1 and CA1-3 for non-primate and primate (red-dashed box) species  
show consistently higher values in V1 (mean = 1.05 ± 0.36) than in CA1-3 (mean = 0.78 ± 0.22) in non-
primates, but consistently lower values in V1 (mean = 0.41 ± 0.17) than in CA1-3 (mean = 1.07 ± 0.24) in  
primates. Mean values are significantly different in non-primates and primates for both V1 (t = 6.733, p =  
0.000) and CA1-3 ( t = -2.377, p = 0.021) when all species are sampled.
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response to changes in the other (Riska & Atchley 1985; Price & Langen 1992). There may be no 

functional explanation for the divorce of the cerebellum from the neocortex in primate evolution, but, 

instead, the divorce itself may be the result of an adaptation unrelated to communication between the 

two structures. Since recent evidence has shown neuronal populations in the cerebellum and neocortex 

to scale linearly, with four cerebellar neurons for every neocortical neuron, across primates (Herculano-

Houzel 2010), the findings in my data may more specifically represent the increased specialization of 

the primary visual cortex along the primate lineage, rather than deviations from a mammalian 

cerebellar-neocortical relationship. Nonetheless, according to my data, the limit imposed by the granule 

cell layer of the cerebellum on the development of the primary visual cortex, or vice versa, has deviated 

from the mammalian trend in primate evolution.

Constraints on cellular reorganization in diverse regions of the brain

In carnivores, glia-neuron ratio and glial cell density in V1 were the strongest predictors of glia-

neuron ratio and glial cell density in CA1-3, respectively. And in AS, glial cell density in CA1-3 

contributed to variance in glial cell density in V1 with significantly more explanatory power than brain 

or body mass, EQ, or gestation length. The cellular densities of V1 and CA1-3 in primates, however, 

were shown to be largely disassociated from one another. It is likely, therefore, that primate evolution 

experienced the removal or relaxation of a constraint binding the concerted development of glia to 

neurons in the allocortex and neocortex. Others have shown that the most enlarged regions of the brain 

in a species have been able to break constraints imposed by energetics by adapting highly nonsynaptic-

based functions (Gibbons 1998; Laughlin et al 1998), such that, for complex functions, synaptic 

neurotransmission may be largely replaced by nonsynaptic diffusion neurotransmission (Bach-y-Rita 

1994, 2001; Aiello & Bach-y-Rita 2000). Neuronal representation by nonsynaptic-based functions may 

have evolved differently in the primate neocortex and allocortex. However, nonsynaptic diffusion 

neurotransmission is highly debated (see Fuxe et al 2007) and intra- and extracellular microelectrode 

studies across taxa and brain regions would be needed to supply evidence for its presence. Nonetheless, 

my data show that variation in the cellular organization of two diverse brain regions is constrained in 

mammals, but may be relaxed or specialized along certain lineages. 

In addition to interspecific differences in the number of cortical areas, with a proliferation of 

cortical areas generally following an increase in brain size (Krubitzer & Huffman 2000), interspecific 

differences in cortical cytoarchitecture have been shown to exist (Hof et al 2000). Adaptations in 
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cellular organization, which often represent isolated functional or behavioral variations and may be 

more easily interpreted than differences in cortical size across taxa (Sherwood et al 2003, 2009; Hof & 

Sherwood 2005; Raghanti et al 2008), suggest that cellular reorganization may be one pathway to the 

independent specialization of brain regions. However, this conclusion may be making the same 

unsettled assumptions previously made in comparative neuroanatomy about cortical size (see 

Wilczynski 2001; Healy & Rowe 2007). Since the adult forms of cortical areas are a result of 

developmental processes that associate diverse cortical regions, there is a fundamental difficulty in 

selecting on one region without affecting all other developmentally associated regions. This appears to 

be the case morphologically (Finlay et al 2001), but it is still unclear whether the same principle applies 

to neurotransmitters, receptors, the expression of neuromodulators, and cell structure and organization. 

Is an increase in glia to neurons in V1 likely to be accompanied a priori by a similar increase in the 

hippocampus? Is the principle of concerted evolution relevant at the cellular level? The observation that 

glia-neuron ratios in the neocortex and allocortex – or even brain size and body size – show tight 

statistical correlations across non-primate mammals may simply mean that the only selection pressure 

acting to stabilize the relationship is a constraint on a developmental process. The proliferation of glia 

subsequent to the proliferation of neurons in the mammalian brain makes it difficult to draw a clear 

analogy between conserved developmental timing in the evolution of different cell types and the 

concerted evolution hypothesis. 

I have provided evidence that diverse regions of the mammalian brain are not de facto capable 

of evolving independently at the cellular level, with the implication that regions may only evolve 

independently following deep phylogenetic adaptations to conserved developmental processes.
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CHAPTER 8
LIFE-HISTORY CORRELATES OF PLACENTAL EVOLUTION

Materials and methods

Data on placentation and life history variables in 132 therian mammals were obtained from the 

literature (see Tables A6-9 for data matrices). Placentation variables and discrete life-history variables 

were categorized according to definitions in the literature (Table 10). Continuous life-history variables 

were log-transformed after controlling for body size (Table A9), then discretized into groups either 

using natural distribution breaks calculated with fixed point clusters or k-means clustering. The 

strongest method for each variable was selected using cluster validation statistics. Cluster optimization 

is a within-group variance minimization approach equivalent to unconstrained clustering originally 

formulated in Fisher (1958). The point of cluster optimization is to find natural breaks that maximize 

homogeneity of the clusters. Homogeneity is the point at which a cluster can be adequately described 

by some homogeneous parametrical distribution, from which there must be no outliers. By definition, 

all data points not contained within the distribution are outliers. If the linear regression cluster of a 

dataset is represented by

Z= X , y      (23)

X = x1 ,... , xn∈ IR pn     (24)

y= y1 , ... , yn∈ IR p ,    (25)

which is a subset of data points that can be characterized by approximately the same linear relationship 

between a p-dimensional independent variable x and a dependent variable y, then the dataset can be 

described by a cluster reference distribution of the form

L  y∣x =F x , ,2 , (26)

where
y=x ' p1u , (27)

L u=N 0,2 ,         (28)

                                                                  , 2∈ IR p1×IR0 .                                          (29)
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The alternative algorithm used for clustering N data points into K subsets Sj containing Nj data points 

minimizes the sum-of-squares criterion

 J = 
j=1

K


n∈S j

∣xn− j
2∣ ,                               (30)

where xn is a vector representing the nth data point and µj is the geometric centroid of the data points in 

Sj. Cluster validation statistics are then used to determine the prediction strength, ps, of each clustering, 

where

                                    ps k = min
1≤ j≤ k

1
nkj nkj−1


i≠i '∈ Akj

I D [C  X g , k  , X h ]ii '=1 ,        (31)

with observations nk1...kk and indices Ak1...kk for the observations in cluster 1,2,...k,  sets Xg and Xh, and 

clustering operator C(X,k), such that if X has n observations, then D[C(...),X)] is an n x n matrix with 

ii'th element D[C(...),X]ii'=1 if observations i and i' happen to be in the same cluster. For examples, see 

(Jenks & Caspall (1971), Hartigan & Wong (1979), Hennig (1997, 1998a), Dudiot et al (2002) 

Armstrong et al 

(2003), Tibshirani 

& Walther (2005), 

or Beese et al 

(2008).

The phylogeny 

used in this 

analysis (Fig. 31) 

was derived from 

a species-level 

supertree 

(Bininda-Emonds 

et al 2007), with 

amendments and 

branch length 

improvements 

Placental character states  Life-history characters
Uterus Activity cycle

simplex Dietary breadth
duplex
bipartite Litters per year

Teat number
Shape diffuse

Adult body mass
Age at first birth
Basal metabolic rate

labyrinthine Basal metabolic rate per mass
Gestation length
Litter size
Maximum longevity

Yolk sac free Neonate mass
inverted Age at maturity

Social group size
Age at weaning
Mass at weaning
Development at birth

(Left) List of placental characters and their character states used for ancestral 

Table 10: Placental and life-history characters and states

bicornuate

Interbirth interval

unfused horns
Terrestriality

cotyledonary Trophic level
discoid
zonary

Interdigitation villous to trabecular

Interhemal barrier epitheliochorial
endotheliochorial
haemochorial

trilaminar

reconstructions, correlation analyses, and mutational mappings. (Right) Life-history 
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provided by Bininda-Emonds (personal communication). As the rooting of the mammalian supertree 

remains ambiguous (see Murphy et al 2001; Lin et al 2002; Hallstrom et al 2007; Murphy et al 2007; 

Waters et al 2007; Wildman et al 2007; Prasad et al 2008; Nishihara et al 2009), three alternative 

rootings of the Eutherian phylogeny were used in this analysis (Fig. 32).

Ancestral state reconstructions for placental character states were approached with parsimony, 

maximum-likelihood, and Bayesian methods. Previous studies have reconstructed the ancestral states 

of several of the placental characteristics tested here, using similar phylogenetic analyses and 

producing comparable results (e.g., Carter & Enders 2004; Vogel 2005; Mess & Carter 2006; Wildman 

et al 2006; Elliot & Crespi 2009). It was necessary, however, to repeat these reconstructions to 

Figure 31. Phylogeny of orders and number of species within orders sampled in 
this study. Adapted from Bininda-Emonds et al (2007).
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completely control for all variables in 

the subsequent analyses of correlated 

states. 

Parsimony reconstructions were 

done in Mesquite v2.7 (Maddison & 

Maddison 2009) with permutations of 

topological variables (i.e., ordered and 

unordered) designed with respect to the 

nature of each character state. 

Maximum-likelihood reconstructions 

were also done in Mesquite to take 

advantage of the branch-length data 

incorporated in the tree (see Schluter et  

al 1997; Pagel 1999; Lewis 2001).

The parsimony method of mapping 

character states on a single phylogenetic 

tree assumes that the tree truly represents 

the hierarchical relationships and relative 

degrees of divergence among the species 

mapped (Felsenstein 1985; Harvey & 

Pagel 1991). In order to avoid the 

potentially confounding effect of this 

assumption, I applied hierarchical 

Bayesian methods (Cunningham 1999; 

Schultz & Churchill 1999; Huelsenbeck & Renquist 2001; Lewis 2001; Nielsen 2002; Ronquist et al 

2005) in SIMMAP v1.5 (Bollback 2006), which summarizes character histories across the phylogeny 

using posterior probabilities, reporting the expected number of changes, the direction of changes if the 

tree is rooted, and the association between character states (Huelsenbeck et al 2003; Bollback 2006). 

Samples (10), prior draws (10), and predictive samples (10) were taken from the posterior distribution 

of the overall rate. In order to accommodate uncertainty in the overall rate of evolution of the character 

state, I employed a discrete gamma prior (Schultz & Churchill 1999; Huelsenbeck et al 2003), with 

Figure 32. Three possible rootings for 
placental mammals: (A) between 
Xenarthra and Boreoeutheria + Afrotheria; 
(B) between Afrotheria and Boreoeutheria 
+ Xenarthra; and (C) between 
Boreoeutheria and Afrotheria + Xenarthra. 
Adapted from Prasad et al (2008).
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gamma distribution (expected value = 5.0, standard deviation = 5.0) parameters α = 0.1 and β = 0.2 and 

distribution categories k = 60. The same gamma prior was used to simulate the history of each placental 

character state. Different sets of the gamma prior were tested for character histories and ancestral 

reconstruction, although these yielded more or less uniform results.

Mutational maps of placental characters were plotted in SIMMAPv1.5 to determine the histories 

of the characters. In addition to the ancestral states, the aggregate of sums, rates, and types of changes 

for each placental character along the tree is important to understanding what is effectively the 

narrative (or the average of many possible narratives) of the evolution of a character (Cunningham 

1999; Huelsenbeck et al 2003). 

Associations along phylogenetic histories between the individual states of each character (d) 

and the overall association (D) between characters were calculated in SIMMAP v1.5 using flat priors 

(α = 1.0, β = 0.2, κ = 60).  Association analyses examined the difference between the observed and 

expected values for each combination of states (Nielsen 2002; Huelsenbeck et al 2003; Bollback 2005). 

If the observed association of two characters (i and j) was less than expected under independence, then 

the value of d was negative; the overall association was the agreement between the observed (o) and 

expected (e) associations of the states (a) for the two characters. Thus, 

d ij=aij
o−aij

 e

and

D= i=1
n  j=1

m ∣d ij∣ ,

where n and m are the number of states for characters i and j, respectively. The posterior predictive 

value was calculated by simulating many character histories under the assumption that the two 

characters were independent. The association between one state and another, therefore, was the 

frequency of occurrence of states on the phylogeny (Huelsenbeck et al 2003; Bollback 2006). Observed 

values were considered significantly different from expected values if they fell outside 95% of the 

probability density of the simulated distribution.

A second statistic, comparable in form to the mutational information content (MIC) statistic, 

was implemented in SIMMAP v1.5, such that 

M= i=1
x  j=1

y ∣mij∣
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and

mij= f ij log2

f ij

f i f j
.

This evaluated the association between character histories along the phylogeny for two characters (M) 

and their states (m) based on the fraction of time (f) one state is associated with another in a character 

history (Bollback 2006). 

Both ordered and unordered models were used for mutational mapping and association analysis. 

For some characters (e.g., interhemal barrier), evolution of distant states should clearly be more 

expensive than evolution of adjacent states (Martin 2007, 2008). However, as this quality is not clearly 

absent or present for all characters in this study, both ordered and unordered models were tested in each 

analysis and interpreted appropriately. Furthermore, despite recent advances in analysis of placental 

tissue (e.g., electron microscopy), which have refined and proliferated definitions of placental character 

states, the terminology used in this study remains useful for understanding and quantifying the 

evolution of placentation (Enders 1965; Mossman 1987; Benirschke & Kaufmann 2000; Wildman et al 

2006; Mess & Carter 2006). 

Definitions

Uterus: The uterine lumen (Fig. 33) can be arranged in several ways (Mossman 1987; Shoshani 

& McKenna 1998): bicornuate, simplex, duplex, bipartite, and unfused. In a bicornuate uterus (e.g., 

dogs), the uterine horns join internally to form a heart-shaped corpus (Mess & Carter 2007). A simplex 

uterus (e.g., humans) has a single unpaired corpus and immature horns (Martin 2003). In a duplex 

uterus (e.g., rabbits), the uterine tubes open independently into the vagina (Mossman 1987; Mess & 

Carter 2007). In the bipartite uterus (e.g., cats) the uterine tubes are mostly independent, but share a 

single cervix. The uterine tubes are unfused in marsupials, so each uterus communicates with the 

urogenital sinus through a separate vagina (Mess & Carter 2007). Parsimony reconstruction indicates 

that the bicornuate uterus, which is found in all superorders except Xenarthra, is the plesiomorphic 

condition for Eutheria (Mess & Carter 2007).

Placental shape: According to the design of the maternofetal contact acrea (Fig. 34), gross 

placental morphology in Eutherian mammals can be categorized as diffuse, cotyledonary, discoid, and 
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zonary (Steven & Morriss 1975; Mossman 1987). A diffuse shape (e.g., pigs) requires the entire surface 

of the allantochorion to be involved in formation of the placenta; the placenta forms a sac covered with 

small villi, which interdigitate and extend over the entire surface of the chorionic sac (Wildman et al 

2006; Mess & Carter 2007). In a cotyledonary placenta (e.g., sheep), cotyledons and caruncles, 

concentrated villi on the fetal and maternal contact sites, respectively, form small disks. In a zonary 

placenta (e.g., bears), the trophoblast forms a complete or incomplete equatorial band of tissue 

surrounding the fetus. A single placenta, discoid in shape, constitutes a discoid placenta (e.g., humans), 

although some species have a secondary disk (e.g., tree shrews). The discoid morphology has been 

identified in all Eutherian superorders, except Xenarthra, and is thus regarded as the plesiomorphic 

condition (Mess & Carter 2007).

Interdigitation: Maternofetal interdigitation (Fig. 35) defines the form taken by the contact area 

between maternal and fetal tissue (Wildman et al 2006). Since the contact area of the chorion and 

endometrium is insufficient to meet fetal demands, maternofetal interdigitation is used to increase the 

placental exchange (Benirschke & Kaufmann 2000). Maternofetal interdigitation may take as many as 

five definitive forms, however, several of these forms can be functionally grouped (see Mess & Carter 

2007). A villous placenta has tree-like branching of the chorion, where the fetal surface is either 

dedicated to maternal villi (e.g., humans) or invested by the epithelial walls of maternal crypts (e.g., 

cows). Intermediate forms of villous interdigitation occur, in which finger-like villi divaricate from 

branching folds (e.g., dolphins). In labyrinthine interdigitation, web-like channels of maternal blood of 

the exchange area are completely closed in by a tissue block of trophoblast (e.g., elephants). The 

labyrinthine pattern is regarded as the plesiomorphic condition, appearing in all Eutherian superorders, 

except Xenarthra (Vogel 2005; Wildman et al 2006; Mess & Carter 2007).

Interhemal barrier: According to whether or not the trophoblast is apposed to the uterine 

epithelium, the endothelium of maternal vessels, or directly to the maternal blood (Fig. 36), the 

placenta is classified as epitheliochorial (e.g., pigs), endotheliochorial (e.g., cats), or haemochorial 

(e.g., humans), respectively (Mossman 1987). All three classifications have areas of comparable 

proximity of the maternal and fetal blood streams reducing the diffusion distance (Wooding & Flint 

1994). It is important to note that the number of maternal tissue layers penetrated by the fetal tissue 

bears no relationship to the ability of the placenta to transfer oxygen to the fetus (Enders & Carter 
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2004; Wildman et al 2006), although nutrient transfer is affected by the number of layers separating the 

fetal and maternal blood. For example, haemochorial placentas are more permeable to lactate and 

exhibit less effective transfer of non-esterified fatty acids than epitheliochorial placentas (Kastendieck 

& Moll 1977; Wooding & Burton 2008). While much is known about how interhemal distance is 

physiologically increased or decreased (see Enders et al 1998; Abd-Elnaiem et al 1999; Mess et al 

2003; Enders & Carter 2004), the evolutionary process remains elusive, despite transformations along 

every major Eutherian clade. It is debated whether the plesiomorphic Eutherian condition is 

endotheliochorial (Luckett 1976, 1993; Mossman 1991; Haig 1993; Pijnenborg 2004; Enders & Carter 

2006; Carter & Mess 2007) or haemochorial (Lillegraven 1987; Vogel 2005; Elliot & Crespi 2008, 

2009).

Yolk sac: Fetal organ systems differentiate during an embryonic period administered by a 

functional yolk sac (Figs. 37-8) (see Amoroso 1959; Wooding & Burton 2008; Freyer & Renfree 2009). 

Interactions between the allantois and yolk sac vary considerably, however. In some Eutherian 

mammals (e.g., tree shrews), a trilaminar omphalopleure is retained until term in close association with 

the maternal epithelium. In others, the yolk sac is used as an exchange region during the early 

anaerobic stage before internal circulation begins (King & Enders 1993; Burton et al 2002; Jauniaux et  

al 2004; Wildman et al 2006; Mess & Carter 2007). Reduction of the yolk sac cavity produces different 

degrees of so-called inversion of the tissue sequence at the maternofetal interface, which is due to the 

loss of the non-vascularized bilaminar yolk sac layers adjacent to the endometrium (Wooding & Burton 

2008). In some cases (e.g., moles), the inverted yolk sac may persist, partially or completely inverted, 

until term (Miglino et al 2008). In many species (e.g., macaques), however, the yolk sac is never truly 

formed or is displaced and floats freely in the exocelom (Jauniaux et al 2004). Thus, the yolk sac at 

term can be categorized by its duration and inversion in the placenta as: free, inverted, or trilaminar. 

Absence of the yolk is regarded as the plesiomorphic condition in Eutheria, while partial or complete 

inversion is regarded as apomorphic (Mess & Carter 2007). 

For definitions of behavioral and life history variables, see Table A9.
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Figure 33: llustration of a duplex (a), bicornuate (b), and simplex (c) uterus. 

Figure 34:  Different species show considerable differences in the 
shape and contact area manifest between fetal and maternal tissues. 
These differences can, however, be classified into four types. In the 
diffuse placenta (a), nearly the entire surface of the allantochorion is 
involved in forming the placenta. In the cotyledonary placenta (b), 
multiple discrete patches (i.e., cotyledons) are formed through 
interactions of allantochorion with endometrium. In the discoid placenta 
(c), a single placenta is formed. In the zonary placenta (d), the 
placenta takes the form of a (complete or incomplete) band of tissue 
surrounding the fetus. Photographs from http://www.embryology.ch.
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Figure 35:  Illustration of a lobule of a labyrinthine haemochorial 
placenta (left) and of a villous haemochorial placenta (right). The 
general direction of bloodflow in each placenta is indicated by the 
arrows. Depleted arterial fetal blood (dark grey) and oxygenated 
venous fetal blood (light gray) vessels, trophoblast (black), 
oxygenated arterial maternal blood (white), and depleted venous 
maternal blood (stippled) are presented. Adapted from Mossman 
(1987).

Figure 36:  Illustration of different classifications of the interhemal barrier in Eutherian mammals. 
The chorion (2) constitutes a barrier to diffusion between blood vessels on the maternal (4) and 
embryonic/fetal (1) sides. Uterine glands (5) are best developed in an epitheliochorial placenta, 
where the uterine epithelium (3) remains intact and special areas of the chorion (areolae) lie 
opposite clusters of gland outlets. From Martin (2008).
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a b

Figure 37:  (a) Schematic of the fetal membranes of placental mammals. The embryo is enclosed 
in the amnion. Trophoblast (blue) and mesoderm (red) form the chorion. Trophoblast and yolk sac 
endoderm (yellow) together constitute a bilaminar omphalopleure. A choriovitelline or yolk sac 
placenta is formed by interposition of mesoderm containing fetal blood vessels. Later the allantois 
(i.e., mesoderm and endoderm) expands into the exocoelom and the allantoic and chorionic 
mesoderm fuse to form a chorioallantoic placenta. The allantois will continue to expand into the 
exocoelom and eventually displace the yolk sac. (b) Illustration of the complete inversion of the 
yolk sac. From http://placentation.ucsd.edu.

Figure 38: Illustration of the interspecific physiological diversity of the fetal 
membrane interaction with the placenta. The diffuse, epitheliochorial 
placenta of the Galago is associated with pronounced development of 
uterine glands and the presence of chorionic vessels (shown as identations 
in the chorion). Its yolk sac and blood vessels are prominent early in 
pregnancy, but are progressively replaced by the allantois. Almost 
antithetically, the discoidal, haemochorial placenta of the Tarsius has only 
weakly developed uterine glands, its yolk sac is poorly developed, and its 
yolk sac vessels are not involved in placentation at all. From Martin (2008).
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RESULTS IV

Ancestral reconstructions

Ancestral eutherian and primate states for five placental characters were reconstructed under 

parsimony, maximum likelihood, and stochastic models (Table 11). These gave compatible results, 

although the parsimony reconstructions were occasionally equivocal and the Bayesian analysis was 

uninformative for reconstructing the ancestral primate states. Alternative tree rootings did not result in 

differences in ancestral reconstruction for any of the characters.

While there was general agreement between the ordered and unordered parsimony models in 

reconstructed ancestral states, only the ordered model produced an unambiguous reconstruction of the 

eutherian state as haemochorial. The maximum likelihood reconstructions closely corroborated the 

results of the parsimony reconstructions, resolving a bicornuate uterus and labyrinthine interdigitation 

for the ancestral condition. There was, however, some conflict between the unordered parsimony and 

likelihood reconstructions of placental shape, which reconstruct the ancestral state as zonary and 

discoid, respectively (although the unordered parsimony model ambivalently reconstructs this 

ambivalently as zonary/discoid). In this respect, I can only emphasize the resolution of the likelihood 

result (0.99), which is supported by the Bayesian analysis as well as previous studies (Wildman et al 

2006; Elliot & Crespi 2009). These results imply that anthropoids (including humans) retain the 

ancestral condition for placental shape and barrier, but derived uterus type and interdigitation.

The ordered and unordered parsimony reconstructions were generally in agreement with the 

likelihood reconstructions of primates. Although the parsimony models gave equivocal reconstructions 

of interhemal barrier, neither the ordered nor unordered model proposed endotheliochorial as a possible 

Character Parsimony (ordered) Parsimony (unordered) Maximum Likelihood (mk1) Stochastic 
Uterus
Placental shape

labyrinthine labyrinthine labyrinthine (0.99) labyrinthine (0.99)
uninformative

Yolk sac free free free (0.99) free (0.9)

Uterus
Placental shape

uninformative
Yolk sac free free Free (0.99)

Parsimony (ordered and unordered), maximum likelihood (ML), and Bayesian (BI) ancestral state reconstructions for placental character states. 
All ML and BI results are statistically significant (p<0.01).

Table 11: Ancestral state reconstructions for definitive placental characters
Taxa
Eutheria bicornuate/simplex bicornuate bicornuate (0.99) bicornuate (0.99)

zonary discoid/zonary discoid (0.99) discoid (0.99)
Maternal interdigitation
Interhemal barrier haemochorial haemochorial (0.89) haemochorial (0.89)

Primata bicornuate bicornuate bicornuate (0.99)
discoid discoid/diffuse discoid (0.86), diffuse (0.13)

Maternal interdigitation villous villous villous (0.83), labyrinthine (0.17)
Interhemal barrier epitheliochorial/haemochorial haemochorial (0.9)
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plesiomorphic condition for primates. There was also ambiguity in two of the likelihood 

reconstructions: the likelihood model finds significant alternative reconstructions for both placental 

shape (discoid: 0.86; diffuse: 0.13) and maternofetal interdigitation (villous: 0.83; labyrinthine: 0.17). 

There appears to be an outside possibility, then, that Strepsirrhini and Tarsiidae, not Anthropoidea, 

retain the ancestral placental shape, and that the labyrinthine interdigitation of Saimiri sciureus is a 

plesiomorphic, rather than convergent, condition. The disparities in likelihood values between the 

alternative reconstructions, in both placental shape and maternofetal interdigitation, however, are quite 

large. 

Mutational mapping

Mutational maps for placental characters are shown for ordered and unordered models (Table 

12). There was clear evidence of directionality in type of uterus (bicornuate to bipartite), interhemal 

barrier (haemochorial to endotheliochorial), and yolk sac (free to trilaminar), whereas directionality 

seemed more relaxed in placental shape and maternofetal interdigitation. Dwell times showed similar 

patterns in both the ordered and unordered models. However, the ordered model showed maternofetal 

interdigitation dividing its time more evenly between villous to trabecular and labyrinthine states than 

in the unordered model, which favored labyrinthine interdigitation; the unordered model showed 

placental shape and interhemal barrier spending more time as discoid and haemochorial, respectively. 

The overall rate changes in both models were uniform (0.09), with the exception of uterus type and 

placental shape, which were recorded to change at three-fold the rate (0.3 and 0.24, respectively) of the 

other characters.

Transformations to haemochorial and epitheliochorial states occured in all major clades. 

Character associations

The character states of twenty life-history and five placental variables (Table 10) were analyzed 

for associations among placental characters and between placental and life-history characters (Table 

A10a-e). The overall measurement of the disagreement between the observed and expected associations 

of the states, represented by the test statistic D, was analyzed first: no associations were found among 

the placental characters; positive associations between placental character states and life-history states 

ranged from 0.017 to 0.107. The test statistic D accounts for association in all of the pairwise 

comparisons of states, however, and likely masks significant associations between individual characters 
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(see Huelsenbeck et al 2003). Examination of the test statistic d was much more informative, providing 

information on the nature of the co-variations. All significant associations between individual states, as 

measured by the test statistic d, identified complementary negative and positive results.

The test statistic M produced no significant results; test statistic m identified positive and negative 

associations comparable to those identified by d.

Associations among placental characters showed small but significant associations between 

character states, without any contradictions of associations (Table 13; Fig. 39). The duplex uterus, for 

example, was positively associated with a free yolk sac (0.016) and negatively associated with an 

inverted yolk sac (-0.012). The diffuse placental shape was positively associated with villous to 

trabecular interdigitation (0.033), an epitheliochorial interhemal barrier (0.030) and an inverted yolk 

sac (0.012), whereas the discoid placental shape was associated with labyrinthine interdigitation 

(0.025) and a haemochorial interhemal barrier (0.020). The haemochorial state was associated with 

labyrinthine interdigitation (0.026) and an inverted yolk sac (0.040), whereas the epitheliochorial state 

was associated with villous to trabecular interdigitation (0.044) and a free yolk sac (0.032). These 

associations reveal distinct bands of co-varying placental character states. 

Associations between placental character states and life-history variables produced non-

contradictory positive and negative results. It cannot be said that any one placental character state 

monopolized any one life-history character state. However, by segregating the life-history variable 

associations according to the associations found among placental states, two rather distinct eutherian 

constellations appeared (Table 14). Indirectly tested co-variation of life-history variables (e.g., 

development at birth and age at weaning, social group size and gestation length), which appear to be 

frequently partnered in associations with placental character states, may give further insights into the 

selective pressures behind those life-history variables. These tests support previous studies linking 

placental invasiveness with adult body mass (Martin 2008; Elliot & Crespi 2009).
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Figure 39: Schematic of positive (continuous lines) and negative (dashed lines) 
associations between placental character states. The type-font of each character state is 
weighted according to its volume of associations.

Type I Type II
Placenta epitheliochorial haemochorial 

villous to trabecular  labyrinthine 
diffuse discoid 
free yolk sac inverted yolk sac

Li fe-h istory long lifespan short lifespan
precocial altricial
small litter large litter
large neonates small neonates
late weaning and maturity early weaning and maturity
small social group size large social group size
long gestation period short gestation period
high interbirth intervals low interbirth intervals

herbivorous

Exam ples Otolemur crassicaudatus Spilogale putorius
Equus caballus Oryctolagus cuniculus

Summary of placental and life-history character states as they are generally segregated in the analysis. 

Table 14: Eutherian constellations
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DISCUSSION IV

Phylogenetic reconstructions resolve the ancestral eutherian condition as labyrinthine 

haemochorial, discoidal in shape, with a free yolk sac and a bicornuate uterus, suggesting that, contrary 

to early views that the human condition is synapomorphic (Hill 1932; Le Gros Clark 1959; Luckett 

1974, 1977), the haplorrhine placenta is primitive with regards to invasiveness and shape. This is in 

agreement with previous work done on ancestral reconstruction in placental mammals (Wildman et al 

2006; Elliot & Crespi 2009). Martin (1990 2008) has argued that the ancestral condition was somewhat 

more likely to have been endotheliochorial than haemochorial, and this study cannot definitely resolve 

that debate. But despite the incorrect coding for certain species in Wildman et al (2006) (see Carter et  

al 2007), my findings, with the correct codings for those species, still gives stronger support for a 

haemochorial ancestral eutherian condition. There is now, in any case, broad agreement that the 

ancestral interhaemal barrier was invasive to at least some degree. Furthermore, the analyses here, 

showing an inclination for certain placental character states to co-evolve along all lineages, do not 

preclude either endotheliochorial or haemochorial placental barriers from co-evolving with a discoidal 

placental shape, which is generally agreed to be primitive (Martin 2008). 

Many placental characters lack a strong phylogenetic signal, implying that they are not strongly 

conserved over evolutionary time and suggesting, instead, a substantial degree of evolutionary 

plasticity. Despite this, much progress remains to be made before the functional consequences of 

variation in placental morphology are understood (Vogel 2005; Martin 2008). Phylogenetic associations 

between such characters and other placental morphologies or life-history variables can identify 

constraints on placental evolution and improve our understanding of the selection pressures that drive 

their phyletic diversity. I have identified two constellations, or syndromes, of combined placentation 

and life-history character states, characterized by multiple associations between each other (Fig. 40). 

These are not exclusive associations, but they provide a useful framework from which to explore the 

functional basis of character associations. The associations of life-history characteristics in Type I (long 

gestation periods, smaller litter of larger, precocial neonates, which are weaned late, mature late and 

live for longer) and Type II (short gestation periods, larger litter of small, altricial neonates, which are 

weaned early, mature early and have shorter lifespans) species are indicative of slow and fast life 

histories, respectively (Promislow & Harvey 1990; Dobson & Oli 2007). The extent to which these 

empirically derived constellations, based on evolutionary associations between placental morphologies 



142

and between placental morphologies and life-history characters, coincide with this dichotomy in life-

history strategies, strongly suggests that life-history strategies have exerted a key influence on the 

evolution and diversification of placental structures in Eutheria. Ultimately, the success of pregnancy 

requires a balance between fetal and maternal demands, and my results suggest that selection pressures 

on placentation stem significantly from variation in reproductive strategies. In terms of placental 

morphology, the two extremes on the scale of life-history strategies are characterized by differences in 

placental shape (diffuse for Type I; discoid for Type II), yolk sac morphology (free for Type I; inverted 

for Type II), and the form and nature of the contact area between maternal and fetal tissues (villous to 

trabecular and epitheliochorial, i.e., non-invasive, for Type I; labyrinthine and haemochorial, i.e., 

invasive, for Type II).

Yolk sac and placental shape

Mossman (1987) attempted to group eutherian taxa by yolk sac morphology and inferred a 

group consisting of vespertilionid bats, tree shrews, and golden moles. The phylogenetic signal of the 

yolk sac is not only weak, but its association with other placental characters is ambiguous. A free yolk 

sac is considered ancestral for eutherian mammals as a whole (Mess & Carter 2007; Table 11). The 

inverted yolk sac is the only placental character state in this study to be negatively correlated with both 

an invasive (endotheliochorial) and non-invasive (epitheliochorial) placentation (Table 13; Fig 39). 

This may be explained by the degree of functional differences found among inverted yolk sacs (e.g., 

the yolk sac of the armadillo, particularly towards the end of gestation, subserves different functions 

than the highly vascularized inverted yolk sac of rodents) (Carter 2001). It may also be explained by a 

strong selective pressure for yolk sac displacement in placentation. The separation of the yolk sac 

endoderm from direct association with the trophoblast frees a valuable region for histotrophic exchange 

(Wildman et al 2006). Many mammals, predominantly endotheliochorial or epitheliochorial (Carter et  

al 2005; Enders & Carter 2006), respond to this by developing specialized regions that augment 

histotrophic transfer (e.g., haemophagous regions). Certain genes influencing metabolism (e.g., insulin-

like growth factor II) are imprinted on the human yolk sac, suggesting that retention of the primitive 

free yolk sac is driven by its importance in embryo development (Freyer & Renfree 2009). Two 

categories of placental shape indicate a relationship with reproductive strategies. The diffuse placenta is 

associated with the production of precocial infants that are weaned relatively late, indicating high 

investment in individual offspring, whereas the discoid placenta is associated with the frequent 
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production of small, altricial infants, indicating low investment per individual infant. Interestingly, the 

discoid placenta is also associated with medium and medium-large social group sizes (see below). 

Similarly, the free yolk sac is associated with the relatively late weaning of precocial offspring, whereas 

the inverted yolk sac is associated with the frequent production of large litters of altricial infants. It is, 

thus, unexpected that a free yolk sac was reconstructed as being ancestral for eutherians since the life-

history characteristics associated with an inverted yolk sac are more in line with what is expected to 

have been the ancestral eutherian pattern of life-history strategies. The diffuse placenta and free yolk 

sac of placental constellation Type I combine to maximise the amount of chorionic surface involved in 

maternofetal interchange through the placenta, whereas the discoid placenta and inverted yolk sac of 

Type II have the effect of limiting the amount of chorionic surface involved in forming the placenta.

Diffusion and exchange

Maternofetal interdigitation encourages fetal exchange. This study and others have resolved the 

ancestral state for Eutheria to be labyrinthine, which is a condition retained in all superorders and only 

partnered with endotheliochorial and haemochorial placentae (Mess & Carter 2005). There is a strong 

dichotomy of associated reproductive strategies between the different types of interdigitation, with 

villous to trabecular interdigitation clearly linked to characters that suggest extensive investment into 

individual offspring (long interbirth intervals and small litters of precocial infants that are born after 

long gestation periods and weaned late), whereas labyrinthine interdigitation is associated with 

maximizing quantity of offspring (medium to large litters of altricial infants that are born after short to 

medium gestation periods and weaned early). In addition, the same association with social group size 

occurs here as in relation to placental shape. The association of labyrinthine interdigitation with short to 

medium gestation lengths and with altricialitiy is consistent with differences in concentrations of 

placental lactogens, a measure that is directly proportional to fetal utilization of maternal resources 

(Braunstein et al 1980; Handwerger & Brar 1992; Haig 1996 2008; Homko et al 1999; Carter 2009; 

Papper et al 2009). In most rodents, the majority of which have labyrinthine placentae, placental 

lactogens are secreted throughout pregnancy (Voogt et al 1982; Flietstra & Voogt 1996), whereas in 

primates and ruminants, the majority of which have villous placentae, placental lactogens are mainly 

secreted during the second-half of pregnancy (Belanger et al 1971; Chard 1982). Thus, the short 

gestational period of the labyrinthine placenta corresponds to a more intense provision of maternal 

resources to the fetus than the longer gestational period associated with villous interdigitation (see Baur 
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Figure 40:  Sketches of species representative of three Eutherian constellations of placental 
morphology and life-history variables. Species in the first constellation (1, Equus caballus; 2, 
Otolemur crassicaudatus) are characterized by a diffuse, epitheliochorial placenta, villous 
interdigitation, and a free yolk sac, as well as large body mass, precociality, and a long gestation 
period. Species in the second constellation (3, Oryctolagus cuniculus; 4, Spilogale putorius) are 
characterized by a discoid, haemochorial placenta, labyrinthine interdigitation, and an inverted yolk 
sac, as well as small adult body mass, altriciality, gregariousness, and a short gestation length. The 
third constellation (5, Ursus maritimus; 6, Bradypus variegatus) is less distinct that the first two and 
more closely represents a variation, albeit qualitatively significant, on the second constellation. 
Species in this constellation are characterized by a zonary, endotheliochorial placenta and 
labyrinthine interdigitation; they tend to have medium-to-large body, altricial young, and socialize with 
large groups. Pictures from http://animaldiversity.ummz.umich.edu. 

http://animaldiversity.ummz.umich.edu/
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1977, 1981). The directional evolution of villous interdigitation in primates – from the labyrinthine 

dermoptera and tree shrews (the two potential sister groups of primates) to the more labyrinthine-than-

villous tarsier (Hill 1932) to the trabecular network of platyrrhines (Wislocki 1929; Hill 1932) that 

exhibit only late-stage branched villi and relatively continuous intervillous space to the ubiquitous 

branched villi in catarrhines (Carter 2009) – suggests that villous interdigitation evolved to help sustain 

longer gestational periods without excessively depleting maternal resources, which is represented in my 

data by a positive association between villous to trabecular interdigitation and a long gestation period. 

As with placental shape, yolk sac morphology, and maternofetal interdigitation, my data 

associate different types of interhemal barriers with different strategies of investment into offspring, 

with the most invasive (haemochorial) type characterized by life-history traits that maximize speed of 

reproduction and number of offspring (relatively low interbirth intervals and large litters of altricial 

infants that are born after short gestation periods and weaned early) and the least invasive 

(epitheliochorial) type associated with traits that maximize investment in individual offspring (longer 

interbirth intervals and small litters of precocial infants that are born after long gestation periods and 

weaned late). The main differences between the dichotomies associated with interdigitation and those 

associated with interhemal barrier are that interhemal barriers also appear to be linked to neonatal size 

(a less invasive placenta is associated with larger neonates than a more invasive one) and overall 

lifespan (a less invasive placenta is associated with longer individual lifespans than a more invasive 

one), two effects not seen with respect to differences in maternofetal interdigitation. My data also 

confirm earlier observations of an association between type of interhemal barrier and adult body mass, 

where haemochorial placentae are associated with lower adult body mass than endotheliochorial or 

epitheliochorial placentae (Martin 1990, 2008).

Of all the characters associated with variation in placental morphology, the interhemal barrier 

has received by far the most attention to date. Early suggestions, based on comparisons between 

epitheliochorial strepsirrhine primates and haemochorial haplorrhine primates, of a progression from 

generally less efficient epitheliochorial to more efficient haemochorial placentation (Leutenegger 1973) 

were later dismissed based on more comprehensive analyses (Martin 1990, 2008; Vogel 2005). More 

recently, Elliot & Crespi (2008) have described differences in patterns of brain-body allometry between 

mammals with different types of interhemal barriers. They have suggested the existence of trade-offs 

over the allocation of resources to brain growth vs. other life-history traits such as litter size or the 

overall energetic cost of litter production, citing differences in the average size of litters between the 
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three main types of interhemal barriers as tentative evidence. These suggestions are clearly confirmed 

by my analyses for litter size, where I report a positive association between haemochorial placentation 

and medium to large litters. Otherwise, however, more expensive strategies tend to associate with less 

invasive placentae, including gestation length (longer in epitheliochorial species, shorter in 

haemochorial species), neonate mass (higher in epitheliochorial species, lower in heamochorial 

species), development at birth (precocial in epitheliochorial species, altricial in endotheliochorial and 

haemochorial species) and age at weaning (higher in epitheliochorial species, lower in 

endotheliochorial and haemochorial species).

Clearly the association between placental morphologies and the dichotomy between opposite 

strategies of offspring investment is not absolute, as many species combine elements of placental 

morphologies that are associated with both types of strategies.  For example, the convergence of villous 

placentation between haemochorial haplorrhines and mostly epitheliochorial ferungulates, as well as 

the retention of villous interdigitation in epitheliochorial strepsirrhines, suggests either different 

physiological roles for interhemal barrier and interdigitation, or the possibility of achieving largely 

equivalent maternofetal interchange through different routes. The observed association between 

interdigitation and interhemal barrier along the mammalian phylogeny may point to a selective 

advantage of villous interdigitation in epitheliochorial species. The number and nature of layers 

between fetal and maternal blood flow bear no relationship to the ability of placentae to provide oxygen 

to the fetus (Enders & Carter 2004), although this does not preclude differences in how oxygen is 

exchanged. The advantage to the embryo of haemochorial placentation, compared to epitheliochorial 

placentation, is direct access to the maternal blood: by placing the surface of the trophoblast in contact 

with maternal blood, the transport of glucose, amino acids, and inorganic ions are facilitated (Jelkmann 

& Bauer 1977; Petschow et al 1978; Franzke & Jelkmann 1982; Martin 2003; Vogel 2005; Kriegs et al 

2006). In epitheliochorial placentae, transfer of nutrients such as iron and lipids is enhanced by the 

conspicuous development of the uterine glands, which typically occur in clusters adjacent to specially 

developed absorptive areas of the chorion (Martin 1980). Oxygen exchange, however, depends on more 

than placental invasiveness; oxygen capacity and affinity of maternal and fetal blood, direction and rate 

of maternal and fetal blood flow, oxygen diffusing capacity of the placenta, and placental oxygen 

consumption are all principal phenomena affecting oxygen exchange (Metcalfe et al 1967; Ashwal et  

al 1984; Carter 1989, 1999; Wilkening & Meschia 1992; Carter 2009; Mess & Carter 2009). The 

efficiency of exchange can be predicted by interdigitation and the placental shape. In labyrinthine 
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placentae, counter-current flow with cross-current components is the most common arrangement 

(Carter et al 2004; Miglino et al 2004), with counter-current flow considered the most effective for 

maternofetal exchange (Faber et al. 1992); whereas the predominant cross-current flow in villous 

placentae are buttressed by the ratio of maternofetal blood flow (Schröder & Power 1997; also see Moll 

1972; Benirschke & Kaufmann 2000, pp35-38). The diffusion capacity of a placenta is proportional to 

surface area and inversely proportional to mean diffusion distance (Longo & Ching 1977), so the small 

surface of an epitheliochorial placenta is compensated by the more efficient transportation implicated in 

a greater diffusion distance. However, in a review of the physiology of placental transfer in mammals, 

Faber et al. (1992) considered the labyrinthine haemochorial placentae of rabbits, rats and guinea pigs 

to be more efficient than either villous epitheliochorial placentation in artiodactyls or villous 

haemochorial placentation in rhesus monkeys and humans. Since my analyses infer the labyrinthine 

haemochorial condition to be ancestral for eutherians, later diversification of, and the observed 

association between, maternofetal interdigitation and interhemal barrier along most lineages suggests 

that the evolution of these two characters was not principally driven by a need for more efficient 

oxygen or nutrient transfer. 

Viviparity-driven and maternal-fetal conflicts

While most of the associations of life-history characters with placental morphologies I have 

described may be explained as reflections of different strategies of resource allocation to individual 

offspring, the association between the labyrinthine, haemochorial placenta and large social group size 

cannot be explained in those terms.

Placentation is a complex sequence of two-way interactions between fetal and maternal tissues. 

Embryonic development in eutherian mammals creates an arena for genomic conflict (Zeh & Zeh 1996, 

1997) between mothers and developing embryos, between sibling embryos, and between maternal and 

paternal genomes (Haig 1996; Spencer et al 1999; Crespi & Semeniuk 2004), in which the evolutionary 

interest of the embryo to maximize its access to maternal resources is promoted, against the interest of 

the mother, through uniquely Y-chromosome genes and paternally imprinted alleles (Moore & Haig 

1991; Haig 1993; McVean & Hurst 1997; Haig 2004; Bressan et al 2009). Since maternal and paternal 

genomes will likely vary in their genetic compatibility (Reik & Walter 1998), normal offspring 

production will only be the consequence of pairing compatible genomes (Zeh & Zeh 2000; Graves 

2010), which in this case might be a paternal genotype of aggressive resource transfer activity and a 
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maternal genotype of similarly aggressive resource transfer suppression activity. Otherwise, the 

resulting embryo is likely to be either too demanding on the mother or unable to expropriate sufficient 

maternal resources. Immunologically, intolerance of the embryo is a barrier to reproduction. Recent 

evidence suggests that immune tolerance is established between the mother and fetus through innate 

immunological interactions between maternal uterine natural killer (uNK) cells and trophoblast cells 

(Croy et al 2006; Carter et al 2007) and that maternal immunological reactions are mostly directed 

against paternal antigens expressed by paternally imprinted genes in the placenta (Zeh & Zeh 2000; 

Bressan et al 2009; Graves 2010). This enlists maternal-fetal conflicts as a response to viviparity-

driven conflicts. Decreasing the risk of immunological compromise during pregnancy becomes 

increasingly important for precocial species with long gestation lengths (Haig 1996). In this study, 

epitheliochorial placentation was positively associated with precociality and long gestation length, 

whereas haemochorial placentation was positively associated with altriciality and both short and 

medium gestation lengths, suggesting a relationship between both development at birth and gestation 

length and immunological risk during pregnancy. In fact, haemochorial placentation has been 

implicated in bleeding at parturition, microchimerism, and erythroblastosis fetalis in species with 

relatively long gestation periods (Benirschke & Kaufmann 2000; Bianchi & Lo 2001; Nelson 2003; 

Moffett & Loke 2006). The susceptibility of epitheliochorial placentation to immunological risk is 

diminished due to the minimal invasion of trophoblast cells into the uterus (Moffett & Loke 2006); this, 

however, has the attending effect of decreasing the susceptibility to viviparity-driven conflict of 

epitheliochorial species, leaving the fetus with only limited control over the maternal system. Although, 

it is argued that evolution of the cotyledonary placental shape (and, especially, giant trophoblast cells) 

in cetartiodactyls may have permitted viviparity-driven conflict to persist in epitheliochorial species 

(Klisch & Mess 2007). 

The viviparity-driven conflict hypothesis for speciation suggests that intense mother-embryo 

conflict, resulting from intimate physiological interaction between mother and embryo during 

embryonic development, in viviparous species promotes reproductive isolation and that it is intensified 

by multiple paternity (Zeh & Zeh 2000). Multiple paternity is predicted to promote the evolution of 

more aggressive paternal genomes (Zeh & Zeh 2000), and since viviparity-driven conflict is predicted 

to be most intense where genomic-imprinting is most effective (Zeh & Zeh 2008), we may expect a 

more rapid evolution of postzygotic reproductive barriers in species with more invasive interhemal 

barriers and particularly high rates of speciation in lineages combining invasive placentation with 
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social systems that allow for multiple paternity. While social organization was not directly tested in this 

study, the positive association between haemochorial placentation and large group size in my data may 

be indicative of the effect of social behavior, and polyandry in particular, on the importance of 

genomic-imprinting in a species. A resulting increase in rates of speciation in haemochorial 

polyandrous species may then explain the preponderance of evolutionary associations between large 

social group size and haemochorial interhaemal barriers. My results therefore suggest that regulation of 

maternal investment by both maternal and paternal genomic-imprinting, driven at least in part by the 

social structure of a species, rather than efficiency of maternal expenditure per ounce of fetal weight 

gain per se, is  an important element of selective pressure behind the evolution of the placental barrier. 

The reconstruction of an invasive haemochorial placenta as ancestral for eutherians could therefore 

suggest an important role for viviparity-driven conflict in the early diversification of crown group 

Eutheria. It should be noted, however, that Elliot & Crespi (2006) have argued that the maternal 

immune response is more strongly suppressed in species with highly invasive placentae than in species 

with less invasive placentae and that, as a result, hybrids remain viable at higher genetic distances in 

haemochorial species than in species with less invasive types of interhaemal barrier. A consequence 

would be that mammals with less invasive placentation should evolve reproductive isolation through 

hybrid inviability more rapidly than mammals with more invasive placentae, presumably resulting in 

higher rates of speciation in the former and directly contradicting the predictions made by the 

viviparity-driven conflict hypothesis. Clearly, a formal comparison of evolutionary rates of speciation 

in lineages with different types of interhemal barriers, and taking social organisation into consideration, 

would be highly informative. Informally, it may be noted that the two orders of extant mammals with 

the highest numbers of species, Chiroptera and Rodentia (Wilson & Reeder 2005), both have 

predominantly invasive interhemal barriers. 
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CONCLUSIONS

Interpreting allometric relationships can be problematic. It is  impossible to predict the 

behavioral differences between two species falling contiguously on an allometric slope, no matter what 

the plotted variables are. The failure of allometry to provide evidence for anything more than a 

developmental constraint across taxa limits the descriptive power of this study to address brain 

structural variation and behavioral differences without referencing existing data. But, in reconstructing 

the evolutionary history of placentation and deriving patterns of placental morphology across extant 

taxa, I have tried to put a very specific face on one element contributing to constraining brain structural 

variation. And in targeting the cellular organization, rather than the gross morphology, of brain regions, 

I have further tried to provide a more realistic picture of the physiological constraints at work within 

taxonomic groups and throughout mammalian brain evolution than studies predicated on size alone. 

The recent orientation of comparative neurobiology – which I think this study is aligned with – has 

stolen away from using gross morphology as an accepted proxy for function, with the aim of 

discovering complex mechanisms of selection on the mammalian brain. By contextualizing cellular 

brain development in mode of placentation, I have provided evidence for an evolutionary relationship 

between adaptive processes in the placenta and brain.

My data show that two biological constellations of placental morphology have evolved in 

Eutheria. If variability in placental morphology is adaptive in the sense that different morphologies 

support different life-history strategies – or that variation in placental morphology adapted 

independently of ecology encourages certain life-history strategies over others - , we should expect 

placental morphologies to correlate with life-history strategies, especially those that  directly relate to 

reproduction. Indeed, it seems that each constellation has placed constraints on life-history strategies. A 

species with an epitheliochorial placenta will typically gestate longer, produce precocial offspring, 

weigh more, and be less gregarious (i.e., be monogamous) compared to a species with a haemochorial 

or endotheliochorial placenta. The observed association in my data between social group size and 

placental invasiveness, placental shape, and maternofetal interdigitation may epitomize a selective 

pressure that has acted on the transformation and retention of definitive placental morphologies. Since 

viviparity-driven conflict is most intense where genomic-imprinting is most effective (Zeh & Zeh 

2008), and genomic-imprinting is most effective in non-monogamous species, due to multi-male 

competition, I have suggested that a major selection pressure on the evolution of these constellations is 
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social: the regulation of paternal investment by both maternal and paternal genomic-imprinting, guided 

by the social behavior of a species, has contributed majorly to the evolution of discrete syndromes of 

placental morphology in mammals.  How then, if at all, have these placental morphologies affected 

cellular organization of the brain in different taxa? Is there an evolutionary relationship between 

variation in the placenta and the cellular brain?

Shifts in ecological or genetic pressures and constraints can both influence the evolution of and 

change the associations among characters over evolutionary time. Such associations can arise if the 

characters are under correlated selection (Felsenstein 1988; Martins et al 2000; Jones et al 2003; 

Arnold & Futuyma 2009), if they are functionally integrated  (Walker 2007; Collar et al 2008; 

Calsbeek & Irschick 2009), or if the characters themselves are genetically correlated (Lande & Arnold 

1983; Estes & Arnold 2007; Revell & Harmon 2008). Comparisons of annotated mammalian genes 

show that, while some genes for sensory perception and immune defense show evidence of positive 

selection, genes with maximal expression in the brain shown no evidence of positive selection. Rather, 

genes involved in spermatogenesis in primates (Nielsen et al 2005) and placentation in mammals 

(Rawm & Cross 2008) show an excess of positive selection. Perhaps this underlies a directionality in 

the evolutionary relationship between placentation and brain organization, suggesting, in agreement 

with recent evidence (Drake 2007; Gonzalez-Voyer et al 2009), that  biological and behavioral 

reproductive strategies are under stronger selection than cognitive processes during adaptive radiations. 

Recent advances in quantitative genetics have allowed workers to map gene loci that underlie genetic 

variances and covariances for quantitative traits, which may pertain to both the mechanisms and 

selective pressures acting on the proliferation of glia and neurons in different brain regions. The 

acquisition of data on the quantitative genetic architecture of brain systems may be able to identify 

deep conservation in developmental brain structures. Alternatively, variation in cognitive processes 

may be exceedingly vulnerable, at least compared to processes implicating reproductive strategies, to 

developmental changes in regulatory RNA. The evolutionary plasticity of phenotypic traits absent 

changes in protein coding sequences, late-stage cell-fate decisions, and the differential expression of 

conserved developmental regimes in the brain across taxa suggest a major role for non-coding RNA, 

protein mediators, and transgenerational epigenetic inheritance in brain evolution. The coordination of 

data at the cellular and molecular level on phyletic diversity in brain organization will help us 

understand how variation in the brain is represented in behavior and how behavior is targeted in the 

evolving brain.
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PRIMARY VISUAL CORTEX CORNU AMMONIS

Species StrGr Str Mol CrbGc

Dasyprocta leporina 1.12 77625 87096 -- -- -- 8090270000 22691400000 33884415614
Lepus americanus 0.43 128825 54954 0.14 380189 53703 4073802778 14791083882 141253754462
Cynocephalus volans 1.12 77625 87096 0.55 89125 48978 1096478196 3311311215 35481338923
Tupaia glis 0.81 131826 107152 0.45 173780 77625 812830516 2818382931 25703957828
Stenella coeruleoalba 2.95 46774 138038 -- -- -- -- -- 14791083881682
Tursiops truncatus 1.55 147911 229087 -- -- -- -- -- 58884365535559
Megaptera novaeangliae -- -- -- -- -- -- 13803842646 48977881937 43651583224017
Sus scrofa 1.45 48978 70795 0.79 114815 93325 8912509381 37153522910 --
Rhinoceros unicornis -- -- -- -- -- -- -- -- 5248074602498
Mustela nigripes 0.78 275423 213796 0.63 213796 134896 1513561248 4365158322 102329299228
Neovison neovison 0.54 229087 120226 0.5 269153 134896 2884031503 7413102413 107151930524
Mephitis mephitis 0.22 169824 38019 0.17 263027 43652 2511886432 8511380382 123026877081
Taxidea taxus 1.07 77625 83176 0.52 194984 102329 1010310570 35481338923 549540873858
Procyon cancrivorus 0.66 144544 93325 0.43 186209 79433 5623413252 18197008586 501187233627
Procyon lotor 0.78 104713 83176 1.32 79433 107152 5888436554 19498445998 489778819368
Nasua nasua 1.17 109648 125893 0.58 95499 56234 2691534804 8912509381 457088189615
Bassaricyon gabbii 1.05 123027 128825 0.63 208930 131826 4677351413 15488166189 239883291902
Potos flavus 0.76 186209 141254 0.91 147911 134896 5888436554 17782794100 467735141287
Ailurus fulgens 1.07 154882 165959 1.12 95499 107152 5011872336 14454397707 630957344480
Zalophus californianus 1.86 30903 57544 0.93 75858 70795 6606934480 33884415614 10232929922808
Callorhinus ursinus 1.7 63096 104713 1.82 60256 109648 5370317964 15135612484 5623413251903
Phoca vitulina -- -- -- -- -- -- 4466835922 16218100974 3090295432514
Ursus maritimus 2.19 44668 95499 3.24 34674 112202 21877616239 79432823472 7943282347243
Canis lupus familiaris 0.76 204174 158489 0.35 288403 102329 2754228703 9120108394 398107170553
Canis latrans 0.34 72444 25119 0.47 74131 33884 13803842646 38904514499 676082975392
Vulpes vulpes 0.95 81283 77625 0.59 138038 79433 8709635900 23988329190 724435960075
Panthera pardus 0.68 75858 51286 0.85 51286 43652 18197008586 56234132519 1949844599758
Felis catus 0.2 114815 22909 0.22 79433 17783 2398832919 6918309709 301995172040
Puma concolor 1.07 69183 74131 0.95 87096 83176 8128305162 26302679919 1479108388168
Crocuta crocuta 1.26 63096 79433 0.98 64565 63096 12589254118 67608297539 2511886431510
Cynictis penicillata 0.87 141254 123027 0.69 114815 77625 4168693835 15135612484 660693448008
Manis gigantea -- -- -- -- -- -- -- -- 1071519305238
Scalopus aquaticus 0.62 295121 181970 0.12 2089296 251189 616595002 1778279410 19952623150
Erinaceus europaeus 0.66 194984 128825 0.28 524807 147911 1584893192 6309573445 45708818961
Sorex araneus 0.87 338844 295121 0.17 1348963 223872 398107171 1122018454 7413102413
Trichechus manatus 1.91 51286 97724 2.24 125893 281838 7585775750 22387211386 --

Table A1a: Results of stereologic estimates of cellular densities (cells per mm³) and volumetric estimates (µm³) in all brain regions

Glia-neuron 
ratio

Neuronal 
density 

Glial cell 
density

Glia-neuron 
ratio

Neuronal 
density

Glial cell 
density

Abbreviations: CrbGc, granule cell layer of the cerebellum; StrGr, stratum granulosum; StrMol, stratum moleculare
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Table A1b: Physiological variables for non-primate species*

Species Brain mass (g)
Dasyprocta leporina 20.42 3.02 104
Lepus americanus 9.77 1.51 37
Cynocephalus volans 6.03 1.41 105
Tupaia glis 3.16 0.15 46
Stenella coeruleoalba 812.83 56 350
Tursiops truncatus 1819.7 209 363
Megaptera novaeangliae 6456.54 38905 324
Sus scrofa 123.03 112 115
Rhinoceros unicornis 501.19 1698 479
Mustela nigripes 8.51 0.58 43
Neovison neovison 7.24 0.76 62
Mephitis mephitis 10.23 2.34 63
Taxidea taxus 52.48 6.03 42
Procyon cancrivorus 38.02 5.01 60
Procyon lotor 39.81 6.17 65
Nasua nasua 30.2 5.01 74
Bassaricyon gabbii 16.6 0.83 52
Potos flavus 30.9 1.95 107
Ailurus fulgens 40.74 3.72 135
Zalophus californianus 2187.76 347 331
Callorhinus ursinus 602.56 148 339
Phoca vitulina 446.68 107 302
Ursus maritimus 457.09 363 251
Canis lupus familiaris 131.83 33 63
Canis latrans 89.13 10.47 62
Vulpes vulpes 47.86 6.03 55
Panthera pardus 125.89 51 100
Felis catus 37.15 4.68 66
Puma concolor 128.82 42 89
Crocuta crocuta 144.54 66 110
Cynictis penicillata 10.47 0.59 56
Manis gigantea NA 33 --
Scalopus aquaticus 1.15 0.04 45
Erinaceus europaeus 3.47 0.93 40
Sorex araneus 0.17 0.01 20
Trichechus manatus 338.84 427 339
*Data from Jones et al (2009).

Body mass 
(kg)

Gestation 
length (d)
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PRIMARY VISUAL CORTEX CORNU AMMONIS

Species
0.29 338844 97724 0.76 85114 64565 1445439771 4897788194 181970085861
0.24 301995 72444 0.93 56234 52481 4570881896 10232929923 144543977075
0.3 338844 102329 0.69 112766 77625 2630267992 8511380382 131825673856

0.17 245471 41687 0.66 114900 75858 3981071706 12589254118 363078054770
0.25 478630 117490 0.65 114815 74131 1949844600 5370317964 213796208950
0.15 410950 59930 0.4 100009 39811 2089296131 6760829754 151356124844
0.27 467735 125893 0.71 102329 72444 2454708916 8317637711 151356124844
0.58 169824 97724 0.38 44668 17378 2398832919 7762471166 301995172040
0.22 194984 42658 3.24 36308 117490 4677351413 13803842646 812830516164
0.28 176349 49168 0.81 81283 66069 8317637711 26915348039 812830516164
0.3 218776 67608 0.7 112851 79433 4786300923 18620871367 1698243652462

0.14 331131 47863 1.78 134896 234423 4073802778 11481536215 380189396321
0.27 422149 113783 1.58 67608 107152 5495408739 18197008586 131825673856
0.18 361470 64343 -- -- -- -- -- --
0.39 426580 165959 1.02 60256 61660 3388441561 10964781961 602559586074
0.52 263027 138038 0.74 87092 64563 6025595861 18620871367 1023292992281
0.51 275423 141254 0.47 194984 89125 1819700859 6918309709 1318256738556
0.16 245471 39811 0.8 97146 78177 3715352291 11481536215 501187233627
0.26 302604 78168 0.78 89125 69183 4475932206 14791083882 645654229035
0.37 416869 154882 1.4 74189 104056 4786300923 15848931925 575439937337
0.23 223872 51286 1.48 75858 109648 4570881896 15488166189 660693448008
0.33 446684 147911 0.72 112202 79433 2238721139 7762471166 549540873858
0.96 151356 144544 -- -- -- -- -- 3981071705535
0.62 218776 134896 3.09 44668 138038 5754399373 21877616239 3090295432514

Pan troglodytes 0.59 208930 123027 0.66 81283 53703 19498445998 58884365536 4168693834703
Homo sapiens 0.72 234423 169824 1.35 32359 43652 18197008586 67608297539 20417379446695
Gorilla gorilla 0.95 144544 138038 -- -- -- -- -- 6309573444802

0.41 229087 93325 1.66 57544 93325 12022644346 36307805477 1230268770812
0.42 239883 101103 1.66 74131 123027 1778279410 6456542290 1288249551693
0.26 234510 60256 0.48 204174 97724 954992586 3548133892 87096358996
0.25 200103 50425 0.47 331131 154882 758577575 2187761624 83176377110
0.85 70795 60256 0.79 87096 69183 5495408739 17378008287 524807460250
0.59 234423 138038 0.63 117490 73926 5128613840 16218100974 275422870334
0.59 190546 112202 1.95 112202 218776 1174897555 2452316441 75857757503
0.59 186209 109648 2 107152 213796 1210144403 2691534804 74131024130
0.45 338844 151356 0.63 245471 151356 2187761624 6025595861 162181009736
0.49 109648 53703 0.26 158489 41687 4570881896 13803842646 162181009736

Table A1c: Results of stereologic estimates of cellular densities (cells per mm³) and volumetric estimates (µm³) in all brain regions

Glia-neuron 
ratio

Neuronal 
density 

Glial cell 
density

Glia-neuron 
ratio

Neuronal 
density

Glial cell 
density StrGr Str Mol CrbGc

Callithrix geoffroyi
Leontopithecus rosalia
Saguinus oedipus
Cebus capucinus
Saimiri sciureus
Aotus trivirgatus
Callicebus moloch
Pithecia pithecia
Alouatta caraya
Alouatta palliata
Ateles ater
Macaca fascicularis
Macaca mulatta
Macaca maura
Cercocebus torquatus
Mandrillus sphinx
Papio anubis
Cercopithecus mitis
Cercopithecus nictitans
Erythrocebus patas
Colobus angolensis
Trachypithecus francoisi
Pongo pygmaeus
Pan paniscus

Hylobates muelleri
Symphalangus syndactylus
Tarsius bancanus
Tarsius syrichta
Lemur catta
Eulemur mongoz
Microcebus murinus
Cheirogaleus medius
Galago senegalensis
Nycticebus coucang
Abbreviations: CrbGc, granule cell layer of the cerebellum; StrGr, stratum granulosum; StrMol, stratum moleculare
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Table A1d: Physiological variables for primate species

Species Brain mass (g)
Callithrix geoffroyi 7.76 0.23 145 0.76 11.5 5.6 4.37 0.6 0.03
Leontopithecus rosalia 12.3 0.65 132 -- 11.2 6.6 -- -- --
Saguinus oedipus 10 0.32 178 0.95 11.7 6.5 5.89 0.79 0.03
Cebus capucinus 72.44 3.39 162 -- 15.8 10.0 46.77 3.8 0.14
Saimiri sciureus 22.91 0.78 145 2 15.5 7.8 15.49 1.91 0.06
Aotus trivirgatus 13.18 0.81 132 1.66 19.1 12.9 10 1 0.03
Callicebus moloch 18.2 0.79 129 1.29 13.2 7.1 11.22 1.2 0.05
Pithecia pithecia 30.2 1.45 170 -- 14.1 7.8 20.89 1.7 0.08
Alouatta caraya 56.23 7.24 138 -- 16.2 9.8 31.62 1.91 0.09
Alouatta palliata 52.7 6.9 139 -- -- -- -- -- --
Ateles ater 102.33 8.51 141 12.3 20.4 11.0 70.79 3.8 0.15
Macaca fascicularis 91.2 11.22 170 8.51 18.2 9.5 63.1 5.25 0.16
Macaca mulatta 70.8 5.06 162 7.94 18.4 9.6 -- -- --
Macaca maura 83.82 7.53 165 -- 20.0 10.8 -- -- --
Cercocebus torquatus 104.71 8.71 166 9.12 19.5 11.2 -- -- --
Mandrillus sphinx 158.49 3.02 129 -- 22.9 12.9 -- -- --
Papio anubis 154.88 23.99 182 19.05 20.9 11.0 141.25 10 0.4
Cercopithecus mitis 70.79 5.25 186 6.92 19.5 11.0 50.12 4.17 0.15
Cercopithecus nictitans 66.7 4.32 180 -- 17.6 10.4 -- -- --
Erythrocebus patas 102.33 7.94 166 -- 22.4 11.2 -- -- --
Colobus angolensis 74.13 8.91 162 8.71 19.1 10.2 -- -- --
Trachypithecus francoisi 91.2 7.59 200 -- 18.6 11.0 -- -- --
Pongo pygmaeus 338.84 66.07 249 38.9 21.4 11.2 269.15 8.13 0.26
Pan paniscus 316.23 43.65 240 -- -- -- 245.47 11.48
Pan troglodytes 346.74 47.86 229 45.71 20.9 10.5 263.03 8.32 0.25
Homo sapiens 1230.27 64.57 269 134.9 -- -- 1003 15.14 0.34
Gorilla gorilla 512.86 151.36 257 70.79 22.9 12.3 281.84 9.12 0.31
Hylobates muelleri 102.33 6.03 209 12.02 20.0 10.7 67.61 4.07 0.17
Symphalangus syndactylus 131.83 11.22 209 -- -- -- -- 5.5 --
Tarsius bancanus 3.47 0.11 178 -- 16.2 12.9 -- -- --
Tarsius syrichta 3.31 0.09 179 0.43 17.0 13.8 22.91 0.3 0.02
Lemur catta 22.39 2.88 138 -- 15.5 12.0 -- -- --
Eulemur mongoz 19.05 3.02 129 -- -- -- -- -- --
Microcebus murinus 1.78 0.07 60 0.22 9.1 7.9 16.98 0.1 0.01
Cheirogaleus medius 3.16 0.27 62 0.4 10.2 8.7 12.59 0.2 0.01
Galago senegalensis 4.79 1.86 135 0.68 12.9 10.0 21.38 0.3 0.02
Nycticebus coucang 12.59 2 191 1.32 15.8 12.0 23.44 0.69 0.04
*Jones et al (2009)

Body mass 
(kg)*

Gestation 
length (d)*

Cerebellar 
volume (cc³)

Axial 
diameter(mm)a

Corneal 
diameter 

(mm)a
Neocortex 

volume (cm³)b

V1 volume 
(cm³)b

LGN volume 
(cm³)b

a Ross & Kirk (2007)
b de Sousa et al (2009, 2010)
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Taxa Dependent variable Independent variable Independent contrasts
RMA Lower 95% CI Upper 95% CI p RMA p

Epitheliochorial Glia cell density neuronal density 0.553 0.368 0.307 0.994 0.068 -0.229 0.859 0.000
(n=10)

Glia-neuron ratio brain mass (g) 0.184 0.954 0.117 0.291 0.001 0.172 0.899 0.175
body mass (kg) 0.273 0.856 0.165 0.451 0.003 0.195 0.873 0.241
gestation length (d) 0.238 0.881 0.141 0.402 0.046 0.149 0.919 0.317
EQ -0.183 0.925 -0.106 -0.314 0.714 -0.139 0.934 0.289

Endotheliochorial Glia cell density neuronal density 1.023 0.001 0.684 1.532 0.053 1.216 0.046 0.043
(n=24)

Glia-neuron ratio brain mass (g) 0.375 0.632 0.254 0.552 0.020 0.504 0.436 0.012
body mass (kg) 0.273 0.788 0.185 0.403 0.023 0.329 0.712 0.022
gestation length (d) 0.912 0.013 0.639 1.301 0.002 1.187 0.230 0.128
EQ -1.223 0.040 -0.789 -1.898 0.239 -1.280 0.060 0.566

Haemochorial Glia cell density neuronal density 1.053 0.065 0.742 1.495 0.209 1.240 0.056 0.003
(n=32)

Glia-neuron ratio brain mass (g) 0.304 0.745 0.221 0.416 0.319 0.345 0.640 0.111
body mass (kg) -0.235 0.803 -0.164 -0.336 0.078 0.306 0.690 0.132
gestation length (d) 0.452 0.533 0.335 0.609 0.352 0.641 0.211 0.158
EQ -0.248 0.824 -0.181 -0.340 0.031 -0.483 0.402 0.969

Table A2: Slope estimates and correlation coefficients for scaling relationships from species means for placental groups for cell densities in V1 and anatomical variables
                    Species mean data

R2 R2
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Table A7: Categories and ranges for discrete variables in the life-history data matrix*
# A B C D E F G H I J K
1 Nocturnal See definition [-0.51,-0.14] [-0.52,-0.29] [0] Fossorial Herbivore [0.799,4.09] [-0.51,-0.31] [-0.19,-0.04] [1.68,4.46]
2 Crepuscular -- [-0.13,0.06] [-0.28,-0.05] [2] Above-ground Omnivore [4.10,7.37] [-0.30,-0.12] [-0.03,0.08] [4.47,7.25]
3 Diurnal -- [-0.04,0.16] [4] -- Carnivore [7.38,10.7] [-0.11,0.01] [0.09,0.19] [7.26,10]
4 -- -- -- -- [6] -- -- [10.8,13.9] [0.02,0.18] [0.20,0.30] [10.01,12.8]
5 -- -- -- -- [8,∞] -- -- [14,17.2] [0.19,0.37] -- --
6 -- -- -- -- -- -- -- -- -- -- --
0 NA NA NA NA NA NA NA NA NA NA NA

# L M N O P Q R S
1 [-1.22,-0.55] [-0.54,-0.23] [-1.20,-1.03] [-0.28,-0.14] [-0.57,-0.38] [-0.005,1.15] [-1.11,-0.94] [-0.09,-0.01]
2 [-0.54,-0.01] [-0.22,-0.02] [-1.02,-0.85] [-0.13,-0.02] [-0.38,-0.05] [1.16,2.3] [-0.93,-0.41] [0,0.08]
3 [0,0.44] [-0.01,0.10] [-0.84,-0.50] [-0.01,0.12] [-0.04,0.24] [2.31,3.46] [-0.41,-0.10] --
4 -- [0.11,0.23] [-0.49,0.01] [0.13,0.29] -- [3.47,4.61] [-0.09,0.31] --
5 -- -- [0.02,0.42] [0.30,0.55] -- -- -- --
6 -- -- -- [0.56,0.85] -- -- -- --
0 NA NA NA NA NA NA NA NA

*Values in variables H-S are log-transformed

[0.07,0.23]

# Uterus Placental shape Maternofetal interdigitation Interhemal barrier Yolk sac
1 bicornuate diffuse villous to trabecular epitheliochorial free
2 simplex cotyledonary labyrinthine endotheliochorial inverted
3 duplex discoid marsupial haemochorial trilaminar
4 bipartite zonary -- marsupial marsupial
5 unfused horns marsupial -- -- --
6 marsupial -- -- -- --
0 NA NA NA NA NA

Table A6b: Categories for variables in placenta data matrix
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Table A8: Life-history data matrix
Species A B C D E F G H I J K L M N O P Q R S Species A B C D E F G H I J K L M N O P Q R S Species A B C D E F G H I J K L M N O P Q R
Ailurus fulgens 2 3 2 1 2 1 1 3 3 3 3 2 1 3 3 2 0 2 0 Hipposideros bicolor 0 1 0 0 0 2 3 1 0 0 0 1 1 0 1 2 0 0 0 Petromus typicus 3 3 0 1 0 1 1 2 0 0 0 0 1 0 0 0 1 0
Anomalurus derbianus 1 1 0 2 0 2 1 2 0 0 0 0 0 0 0 0 1 0 0 Homo sapiens 3 0 3 0 0 0 0 4 5 0 0 3 0 5 5 3 0 4 2 Phocoena phocoena 0 2 2 1 0 0 3 4 4 0 0 3 1 3 5 3 4 3
Antilocapra americana 0 2 2 1 0 1 1 4 2 4 4 3 2 2 5 2 3 2 2 Hydrochoerus hydrochaeris 2 5 0 1 4 2 1 4 0 4 4 2 2 2 5 2 2 2 0 Pithecia pithecia 3 2 3 0 0 2 1 3 3 0 0 2 1 3 0 2 1 2
Aplodontia rufa 0 2 0 1 0 1 1 2 3 2 2 1 2 2 3 2 0 2 1 Hydromys chrysogaster 2 2 1 3 2 1 3 2 1 2 2 1 2 2 3 1 0 1 1 Platanista gangetica 0 2 0 0 0 0 3 4 0 0 0 3 1 4 0 0 0 3
Ateles geoffroyi 3 2 3 0 0 2 1 3 4 0 0 3 1 4 4 3 4 4 2 Hylobates moloch 3 4 3 1 0 0 2 3 0 0 0 3 0 0 0 0 1 0 0 Pongo pygmaeus 3 5 3 0 0 2 2 4 5 0 0 3 1 5 5 3 1 4
Bathyergus janetta 0 4 0 2 0 1 1 2 0 2 2 0 2 0 3 0 1 1 0 Hystrix cristata 1 6 0 2 3 1 2 3 0 0 0 2 1 0 0 0 0 0 0 Potamogale velox 1 2 0 2 0 1 3 2 0 0 0 0 2 0 0 0 0 0
Bos taurus 0 0 0 1 0 0 0 5 0 0 0 3 0 3 0 2 0 0 0 Indri indri 3 4 3 1 1 2 1 3 0 0 0 2 1 0 0 3 1 3 0 Procavia capensis 3 5 2 1 3 2 1 3 4 3 3 3 2 3 4 2 3 2
Bradypus variegatus 2 1 2 0 0 2 1 3 0 3 3 2 0 0 4 0 1 1 0 Jaculus jaculus 0 0 3 2 0 0 0 1 2 2 1 1 2 2 2 2 0 2 0 Procyon lotor 2 6 2 1 3 2 2 3 0 3 3 2 2 3 3 2 0 2
Callorhinus ursinus 2 6 2 1 0 1 2 4 0 0 0 3 1 4 5 3 0 2 2 Lama glama 0 2 0 1 0 1 1 4 0 0 0 3 0 4 5 2 0 2 2 Pteronotus davyi 0 1 0 1 0 2 3 1 0 1 1 0 1 0 1 0 0 0
Canis lupus 2 1 2 2 4 1 3 4 3 4 4 2 3 4 4 2 0 1 0 Lemur catta 2 4 3 1 0 2 2 3 3 0 0 2 1 4 3 2 3 2 0 Pteropus giganteus 0 1 0 1 0 2 1 2 0 2 2 2 1 4 3 2 0 3
Capromys pilorides 0 3 0 0 2 2 2 3 0 2 3 2 2 2 4 2 0 1 0 Lobodon carcinophaga 2 1 3 0 0 1 3 4 4 0 0 3 1 4 6 3 0 1 2 Pudu puda 2 4 0 0 0 1 1 3 0 0 0 3 1 3 4 1 0 2
Carollia perspicillata 1 3 1 2 0 2 2 1 2 1 1 2 0 2 2 2 0 1 1 Loxodonta africana 3 4 3 0 1 1 1 5 5 0 0 3 1 5 6 3 3 4 2 Redunca arundinum 2 2 2 0 2 1 1 4 0 0 0 3 1 3 5 0 1 0
Castor canadensis 2 3 0 1 2 1 1 3 0 0 0 2 2 3 4 2 2 1 0 Macaca mulatta 3 1 2 1 0 0 1 3 4 3 3 2 1 4 4 2 4 3 2 Rhinoceros unicornis 2 3 3 0 0 1 1 5 5 0 0 3 1 4 6 3 1 3
Catagonus wagneri 3 6 0 0 3 1 2 4 3 0 0 2 2 2 4 2 2 2 0 Macrotus californicus 0 2 0 0 0 2 2 1 2 1 1 3 0 2 2 1 0 1 0 Rhinolophus rouxii 0 1 0 1 0 2 3 1 3 0 0 2 1 1 2 2 0 2
Cavia porcellus 0 0 0 5 1 1 0 2 0 0 0 2 2 3 3 1 0 1 1 Manis tricuspis 0 0 2 1 0 0 0 2 0 3 3 2 0 0 3 2 0 3 1 Rhinonicteris aurantia 1 1 0 1 0 2 3 1 2 0 0 2 0 0 2 2 0 2
Cephalophus silvicultor 2 5 2 0 2 1 2 4 0 0 0 3 0 3 5 0 1 1 0 Megaderma lyra 0 2 0 1 0 2 3 1 3 0 0 2 0 3 2 2 0 1 0 Rhinopoma hardwickii 0 1 0 1 0 2 3 1 2 0 0 2 1 0 2 2 0 2
Chaetodipus fallax 0 3 0 1 0 1 1 1 0 1 1 1 2 2 0 1 1 0 0 Megaptera novaeangliae 0 2 3 1 0 0 3 5 0 0 0 3 0 5 6 3 1 3 0 Rhynchocyon petersi 0 0 0 0 0 0 0 2 0 0 0 0 2 0 0 0 0 0
Chaetophractus villosus 0 0 0 0 0 1 0 3 0 3 3 2 1 3 3 2 0 2 0 Microcebus murinus 1 5 2 0 0 2 2 2 2 2 2 2 2 3 2 2 1 1 0 Saimiri sciureus 3 3 2 0 0 2 2 2 4 3 2 2 0 4 3 3 3 3
Chinchilla chinchilla 2 6 0 3 3 1 1 2 0 0 0 2 2 2 0 2 0 2 0 Microdipodops pallidus 1 2 0 0 0 1 2 1 0 1 1 0 3 0 0 0 0 0 0 Scalopus aquaticus 2 4 0 1 3 1 2 2 0 0 0 1 3 2 2 2 0 1
Choloepus didactylus 2 3 3 0 1 2 2 3 0 0 0 3 0 4 4 3 1 2 0 Micropotamogale lamottei 1 2 0 0 4 2 3 2 0 0 0 0 3 0 0 0 0 0 0 Setifer setosus 1 2 0 2 4 1 2 2 0 2 2 2 2 2 3 1 0 1
Crocuta crocuta 1 1 3 0 2 1 3 4 0 0 0 2 2 4 4 2 0 3 2 Molossus rufus 2 3 0 1 0 0 1 3 0 0 0 2 1 0 4 2 1 1 0 Solenodon paradoxus 2 2 0 2 1 2 3 2 0 0 0 2 1 2 3 2 1 2
Ctenodactylus gundi 0 0 1 0 0 0 0 2 0 0 0 2 2 0 3 1 0 0 0 Moschus moschiferus 2 3 0 1 0 0 1 3 0 0 0 2 1 0 4 2 1 1 0 Spilogale putorius 1 6 2 0 4 1 2 2 0 2 2 1 3 2 2 1 0 2
Cuniculus paca 1 5 1 2 4 1 1 3 0 3 3 2 1 3 4 2 1 2 0 Mus musculus 0 1 0 3 4 2 3 1 1 1 1 1 3 2 1 1 0 1 1 Suncus etruscus 0 0 0 3 0 0 0 1 0 0 0 1 3 1 1 0 1 1
Dasyprocta leporina 3 3 0 0 0 1 1 3 0 3 3 2 1 3 0 0 0 2 0 Myocastor coypus 2 6 1 3 4 1 2 3 2 0 0 2 3 2 4 1 2 2 2 Sus scrofa 2 5 2 2 4 0 2 4 2 0 0 2 3 3 4 2 3 2
Dasypus novemcinctus 2 5 0 0 2 1 2 3 0 3 3 2 3 3 3 2 1 2 0 Myotis lucifugus 0 1 0 1 0 2 3 1 3 1 1 2 0 4 2 2 0 1 1 Tachyoryctes splendens 0 0 1 2 0 0 0 2 0 2 2 1 1 0 3 1 1 1
Daubentonia madagascariensis 1 6 3 1 1 2 2 3 4 0 0 2 1 3 3 2 1 3 2 Myrmecophaga tridactyla 2 1 0 1 0 1 3 4 0 3 4 3 0 3 5 3 1 2 2 Tadarida brasiliensis 0 1 0 1 0 2 3 1 0 1 1 2 1 3 2 2 0 2
Delphi0pterus leucas 0 2 3 1 0 0 3 5 0 0 0 3 1 4 6 3 2 4 0 Myzopoda aurita 0 1 0 0 0 2 3 1 0 0 0 0 0 0 0 0 0 0 0 Talpa europaea 2 1 0 1 4 1 3 2 2 0 0 1 3 2 2 2 0 1
Desmodus rotundus 0 1 2 2 0 2 3 1 0 1 1 3 0 3 2 0 0 3 0 Naemorhedus goral 2 2 2 0 2 1 1 4 0 0 0 3 0 3 5 2 0 2 0 Tamandua tetradactyla 2 1 0 1 0 2 3 3 0 3 3 2 0 2 0 0 1 0
Didelphis virginiana 1 4 1 2 4 2 2 3 1 3 3 1 4 1 1 1 1 2 1 Nandinia binotata 1 2 1 0 2 2 1 3 0 3 3 2 2 3 3 2 0 2 0 Taphozous melanopogon 1 0 0 1 0 2 0 1 3 0 0 2 1 0 2 2 0 1
Dinomys branickii 1 4 0 0 4 1 1 3 0 0 0 3 2 2 4 0 0 0 0 Natalus tumidirostris 0 1 0 0 0 2 3 1 0 1 1 0 0 0 0 0 0 0 0 Tapirus terrestris 2 5 0 0 1 1 2 4 0 0 0 3 0 4 5 2 1 3
Dipodomys ordii 1 5 1 2 0 0 2 1 0 1 1 1 2 2 2 1 0 0 0 Nectogale elegans 0 2 0 0 0 1 3 1 0 0 0 0 0 0 0 0 0 0 0 Tarsius syrichta 1 3 2 0 0 0 2 2 3 2 2 3 0 2 3 2 2 2
Dugong dugon 2 4 3 0 0 0 2 4 0 0 0 3 0 5 6 3 2 4 0 Neovison vison 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Tenrec ecaudatus 2 3 0 1 4 1 2 2 0 2 2 2 4 2 3 1 0 1
Elephas maximus 2 3 3 0 1 1 1 5 5 0 0 3 1 5 6 3 2 3 0 Noctilio albiventris 2 3 0 0 0 2 2 1 0 1 1 0 1 0 2 0 0 2 1 Thomomys bottae 2 4 0 2 0 1 1 2 1 2 2 1 3 1 2 1 1 1
Equus caballus 2 1 3 1 1 1 1 4 3 0 0 3 0 5 6 2 0 3 0 Nycticebus pygmaeus 0 0 0 0 0 0 0 2 0 0 0 3 1 0 3 0 1 0 0 Thryonomys swinderianus 1 2 0 2 0 1 1 3 3 0 0 2 3 1 3 1 1 1
Erethizon dorsatum 1 6 0 0 2 2 1 3 0 0 0 3 0 3 4 2 1 1 0 Ochotona princeps 3 2 1 2 0 1 1 2 0 2 2 1 2 2 2 2 0 1 1 Thyroptera tricolor 0 1 0 2 0 2 3 1 0 0 0 2 1 0 1 0 0 0
Erinaceus europaeus 2 8 0 2 4 1 2 2 2 2 2 1 3 3 3 2 0 1 1 Octodon degus 2 7 0 2 4 2 2 2 0 2 2 2 3 2 2 1 0 1 1 Tragulus javanicus 1 3 0 0 2 0 1 3 0 3 3 2 1 2 0 1 1 1
Furipterus horrens 0 1 0 0 0 2 3 1 0 0 0 0 0 0 0 0 0 0 0 Odobenus rosmarus 2 6 3 0 0 1 2 5 4 0 0 3 1 4 6 3 0 4 2 Trichechus inunguis 2 3 0 0 0 0 1 4 0 4 4 3 0 4 0 3 1 4
Galeopterus variegates 1 3 0 0 1 2 1 2 0 0 0 2 0 1 0 0 0 0 0 Orycteropus afer 1 1 0 1 2 1 3 4 4 4 4 3 1 3 5 2 1 1 2 Trinomys setosus 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0
Gazella gazella 2 3 2 0 0 1 1 3 3 0 0 3 1 3 5 2 2 2 0 Oryctolagus cuniculus 2 2 1 3 0 0 1 2 1 0 0 1 3 3 3 1 0 1 1 Tupaia glis 3 4 1 3 2 2 2 2 2 2 2 1 2 2 2 1 0 1
Giraffa camelopardalis 2 5 3 1 2 1 1 5 4 0 0 3 1 4 6 3 4 3 0 Otolemur crassicaudatus 1 5 2 0 0 0 2 2 3 2 2 2 1 3 3 2 2 2 1 Tursiops truncatus 0 2 3 0 0 0 3 4 4 0 0 3 1 4 6 3 2 4
Gorilla gorilla 3 3 3 0 0 1 2 4 5 0 0 3 1 4 5 3 2 4 2 Pan troglodytes 3 6 3 0 1 2 2 4 5 4 4 3 1 5 5 3 4 4 2 Ursus maritimus 3 3 3 0 2 1 2 4 4 4 4 2 1 4 4 3 0 3
Hemicentetes semispinosus 2 1 0 2 0 1 3 2 0 1 2 2 3 1 2 1 0 1 0 Panthera tigris 1 1 3 1 0 1 3 4 4 4 4 2 2 3 4 3 0 2 2 Viverra civettina 1 6 0 0 0 1 2 3 0 0 0 0 0 0 0 0 0 0
Hippopotamus amphibius 2 2 3 1 0 1 2 5 4 0 0 3 0 4 6 3 0 3 2 Pedetes capensis 1 3 1 0 0 1 1 3 0 3 3 2 1 3 4 2 0 1 2 Xerus inauris 3 4 0 1 0 1 1 2 0 2 2 1 2 3 3 2 3 2
Perognathus parvus 2 3 0 2 0 1 2 1 0 0 0 1 3 1 2 2 1 1 0 Peromyscus maniculatus 1 4 1 3 0 2 2 1 1 1 1 1 3 0 2 1 0 1 1 Zapus princeps 0 3 0 1 0 0 2 1 0 0 0 1 3 0 0 0 0 1
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Character State Bicornuate Simplex Duplex Bipartite
GROUP SIZE Small

Medium-large
Large

TROPHIC LEVEL Herbivore
Omnivore
Carnivore

DEVELOPMENT Altricial
Precocial

ADULT BODY MASS Small -0.012
Large 0.012

U association derived from unordered model.

Table A10a: Uterus association d statistics 

-0.014U

0.014U

0.016U

-0.013, -0.013U

0.010, 0.015U 0.014U

0.017U -0.012, -0.013U

-0.013, -0.013U

0.013, 0.013U

-0.010U

0.010U

All associations are significant to p<0.001. 
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Character State Diffuse Cotyledonary Discoid Zonary
ADULT BODY MASS Medium-large

AGE AT WEANING Low
Medium
Medium-high
High

DEVELOPMENT AT BIRTH Altricial
Precocial

GESTATION LENGTH Short
Long

INTERBIRTH INTERVAL Short 0.014
Medium

LITTER SIZE Small
Large 0.016

MASS AT WEANING Large -0.013

NEONATE MASS Small -0.010
Medium 0.010
Large

SOCIAL GROUP SIZE Small 0.011 -0.012
Medium 0.011
Medium-large 0.012

U association derived from unordered model.

Table A10b: Placental shape association d statistics 

0.014U -0.015U

-0.010U

-0.012U

0.014U

0.013U

-0.018U 0.016, 0.015U

0.018U -0.016, -0.015U

0.020U

0.010U -0.022U

-0.015, -0.010U

-0.024, -0.024U

0.010U

-0.012U

-0.017, -0.014U

All associations are significant to p<0.001. 
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Character State Villous to trabecular Labyrinthine
ADULT BODY MASS Small

Medium-small -0.015 0.015
Medium
Medium-large

AGE AT WEANING Low
Medium-low
Medium-high 0.017 -0.017

DEVELOPMENT AT BIRTH Altricial -0.033 0.033
Precocial 0.033 -0.033

GESTATION LENGTH Short
Medium
Long

INTERBIRTH INTERVAL Medium-low -0.014 0.014
High

LITTER SIZE Small
Medium-small -0.032 0.032
Medium
Medium-large -0.013 0.013
Large

SOCIAL GROUP Small
Medium-small

TEAT NUMBER Two 0.013 -0.013

U association derived from unordered model.

Table A10c: Maternofetal interdigitation association d statistics 

0.013, 0.014U -0.013,-0.014U

-0.013U 0.013U

0.011U -0.011U

-0.013, -0.014U 0.013, 0.014U

-0.018, -0.018U 0.018, 0.018U

-0.016, -0.014U 0.016, 0.014U

-0.011U 0.011U

0.034, 0.034U -0.034, -0.034U

0.012U -0.012U

0.019U -0.019U

-0.032U 0.032U

-0.012U 0.012U

0.021, 0.019U -0.021, -0.019U

0.013U -0.013U

All associations are significant to p<0.001. 
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Character State epitheliochorial endotheliochorial haemochorial Character State epitheliochorial endotheliochorial haemochorial
ACTIVITY CYCLE Diurnal 0.014 -0.017 LITTERS PER YEAR One -0.010

Nocturnal -0.012 Two -0.010

ADULT BODY MASS Small -0.014 LITTER SIZE Small
Medium-small -0.012 Medium
Medium-large 0.015 Large
Large 0.022 -0.015

TERRESTRIALITY Fossorial -0.018
AGE AT FIRST BIRTH Low Above ground 0.018

Medium-high -0.017
INTERBIRTH INTERVAL Short

AGE AT MATURITY Low Medium
High Long -0.022

AGE AT WEANING Low 0.010 NEONATE MASS Small
Medium -0.016 Medium
High Large

GESTATION LENGTH Short -0.016 0.024 SOCIAL GROUP SIZE Small 0.015 -0.013
Medium 0.019 0.038 Medium-large
Long Large 0.018

DEVELOPMENT AT BIRTH Altricial MAXIMUM LONGEVITY Low
Precocial Medium

High
TROPHIC LEVEL Herbivore

Omnivore -0.025 U association derived from unordered model.
Carnivore

LITTERS PER YEAR One -0.010
Two -0.010

LITTER SIZE Small
Medium
Large

TERRESTRIALITY Fossorial -0.018
Above ground 0.018

INTERBIRTH INTERVAL Short
Medium
Long -0.022

NEONATE MASS Small
Medium
Large

SOCIAL GROUP SIZE Small -0.013
Medium-large
Large 0.018

MAXIMUM LONGEVITY Low
Medium
High

LITTERS PER YEAR One -0.010
Two -0.010

LITTER SIZE Small
Medium
Large

TERRESTRIALITY Fossorial -0.018
Above ground 0.018

INTERBIRTH INTERVAL Short
Medium
Long -0.022

NEONATE MASS Small
Medium
Large

SOCIAL GROUP SIZE Small 0.015 -0.013
Medium-large
Large 0.018

MAXIMUM LONGEVITY Low
Medium
High

U association derived from unordered model.

Table A10d: Interhemal barrier association d statis tics 

-0.023, -0.022U 0.018, 0.037U 0.010, 0.010U -0.032, -0.032U

0.011, 0.036U -0.011, -0.010U 0.024, 0.024U

0.023, 0.029U -0.012, -0.040U -0.035, -0.034U 0.022, 0.020U

0.015U

0.010U -0.015U

-0.010, -0.011U

-0.033, -0.033U 0.022, 0.023U -0.021U

0.034, 0.032U -0.020, -0.020U 0.011, 0.011U

-0.021, -0.025U 0.023, 0.023U -0.016, -0.016U 0.010, 0.010U 0.033, 0.033U

0.015U 0.029U 0.010, 0.010U -0.010, -0.011U

0.022, 0.025U -0.014, -0.014U 0.032, 0.033U -0.028, -0.026U

-0.028, -0.028U -0.020, -0.020U

-0.020U 0.018, 0.019U

0.030, 0.031U -0.038, -0.040U

-0.044, -0.042U 0.018, 0.015U 0.021U -0.022, -0.022U 0.011U

0.044, 0.042U -0.018, -0.015U -0.021U 0.018, 0.018U 0.011, 0.011U 0.010, 0.010U

0.020U -0.010, -0.011U

-0.023U 0.017, 0.011U All associations are significant to p<0.001. 
-0.019U

0.020U

0.010, 0.010U -0.032, -0.032U

-0.011, -0.010U 0.024, 0.024U

-0.035, -0.034U 0.022, 0.020U

0.015U

-0.015U

-0.010, -0.011U

-0.021U

0.011, 0.011U

-0.016, -0.016U 0.010, 0.010U 0.033, 0.033U

0.029U 0.010, 0.010U -0.010, -0.011U

0.032, 0.033U -0.028, -0.026U

-0.020, -0.020U

0.018, 0.019U

-0.022, -0.022U 0.011U

0.018, 0.018U 0.011, 0.011U 0.010, 0.010U

0.020U -0.010, -0.011U

0.010, 0.010U -0.032, -0.032U

-0.011, -0.010U 0.024, 0.024U

-0.035, -0.034U 0.022, 0.020U

0.015U

-0.015U

-0.010, -0.011U

-0.021U

0.011, 0.011U

-0.016, -0.016U 0.010, 0.010U 0.033, 0.033U

0.029U 0.010, 0.010U -0.010, -0.011U

0.032, 0.033U -0.028, -0.026U

-0.020, -0.020U

0.018, 0.019U

-0.022, -0.022U 0.011U

0.018, 0.018U 0.011, 0.011U 0.010, 0.010U

0.020U -0.010, -0.011U

All associations are s ignificant to p<0.001. 
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Character State Free Inverted Trilaminar Character State Free Inverted Trilaminar
ADULT BODY SIZE Small NEONATE MASS Small 0.011

Medium-small Large -0.010
Medium-large

TROPHIC LEVEL Herbivore
AGE AT MATURITY Low Omnivore -0.021

High Carnivore -0.023

AGE AT WEANING Medium 0.010 SOCIAL GROUP SIZE Small -0.019
High -0.012 Medium-large 0.023

LITTER SIZE Small MAXIMUM LONGEVITY Short 0.018
Medium 0.029 Medium 0.010
Large Long -0.011

LITTERS PER YEAR Two TEAT NUMBER Two -0.011

GESTATION LENGTH Short INTERBIRTH INTERVAL Short
Medium 0.013 -0.029 Medium -0.016 -0.029
Long Long -0.019

DEVELOPMENT AT BIRTH Altricial 0.027
Precocial U association derived from unordered model.

NEONATE MASS Small 0.011
Large -0.010

TROPHIC LEVEL Herbivore
Omnivore -0.021
Carnivore -0.023

SOCIAL GROUP SIZE Small -0.019
Medium-large 0.023

MAXIMUM LONGEVITY Short 0.018
Medium 0.010
Long -0.011

TEAT NUMBER Two -0.011

INTERBIRTH INTERVAL Short
Medium -0.016 -0.029
Long -0.019

U association derived from unordered model.

Table A10e: Yolk sac association d statistics 

0.010U -0.013, -0.013U

0.021U 0.015, 0.015U

0.025U -0.026U

-0.019U

-0.014U 0.027U 0.025U

0.014U -0.027U 0.022U

0.010U

0.015U -0.017U

-0.033U -0.012, -0.012U

0.014, 0.015U

0.033, 0.033U 0.012U

-0.019U

-0.018U -0.012, -0.012U

0.016U 0.010, 0.010U 0.010, 0.010U

-0.018U All associations are significant to p<0.001. 
0.017U -0.027U

-0.013, -0.013U

0.015, 0.015U

-0.019U

0.025U

0.022U

-0.017U

-0.012, -0.012U

0.014, 0.015U

0.012U

-0.012, -0.012U

0.010, 0.010U

All associations are significant to p<0.001. 
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Recursive tree for glia-neuron ratio in V1 in AS

Supplemental Figure1a: Recursive trees and relative importance metrics for determining glia-neuron ratio in V1 in 
AS. The branch lengths in the recursive trees are representative of the deviance explained by each variable. The 
variables collectively explained 42.06% of the observed variance. The differential contributions of CrbGC, brain 
mass (BrM), body mass (BdM), encephalization quotient (EQ), and gestation (GstLth) are shown to be significantly 
greater than those of glia-neuron ratio in CA1-3 (CA.G), and both volumetric measurements of the dentate gyrus 
(StrGr, StrMol) according to the metrics lmg, pmvd, and last. The differential contributions of all variables are not 
shown to be significantly different (i.e., the 95% CI for the differences included zero) according to the metric first. 
The recursive tree shows StrGr to be the foremost contributor to variance in glia-neuron ratio in V1, although 
gestation length appears to make the greatest contribution. Body mass is shown to contribute in species with a large 
StrGr (>4.9x109µm3), but also in species with a high glia-neuron ratio in CA1-3 (>0.25), low gestation length (<116d), 
and a small StrGr (<4.9x109µm3). Gestation, too, contributes to variance in species with a large (>4.9x109µm3) and 
small (<4.9x109 µm3) DG, although only in species with a small body mass (<49.5kg). This suggests that the model 
may be complex. All variables in the recursive tree models are presented as log-transformed. Abbreviations: BdM, 
body mass (kg); BrM, brain mass (g); CA.g, glial cell density in CA1-3 (cells/mm3); CA.GNI, glia-neuron ratio in CA1-
3; CA.n, neuronal density in CA1-3 (cells/mm3); CrbGc, volumetric estimate of the granule cell layer of the 
cerebellum (µm3); EQ, encephalization quotient; GstLth, gestation length (days); StrGr, volumetric estimate of the 
stratum granulosum (µm3); StrMol, volumetric estimate of the stratum moleculare (µm3); V1.g, glial cell density in V1 
(cells/mm3); V1.GNI, glia-neuron ratio in V1; V1.n, neuronal density in V1 (cells/mm3).

Relative importances for glia-neuron ratio in V1 in AS
(with 95% bootstrap confidence intervals)



Relative importances for glia-neuron ratio in CA1-3 in AS
(with 95% bootstrap confidence intervals)

Recursive tree for glia-neuron ratio in CA1-3 in AS

Supplemental Figure 1b: Recursive trees and relative importance metrics for determining glia-neuron ratio in CA1-3 
in AS. The variables collectively explained 46.64% of the observed variance. The differential contributions of StrGr, 
StrMol, CrbGC and gestation length (GstLth) are shown to be significantly greater than those of glia-neuron ratio in 
V1 (V1.GNI), brain mass (BrM), body mass (BdM), and EQ, according to the metric pmvd. StrGr, StrMol, and 
gestation length are also shown to make differentially greater contributions than the other variables according to the 
metric first. The recursive tree model shows brain mass to be the foremost and greatest contributor to variance in 
glia-neuron ratio in CA1-3. Gestation length is shown to be important in species with both small (<39g) and large 
(>39g) brain mass, indicating that the model may be complex. 



Relative importances for neuronal density in V1 in AS
(with 95% bootstrap confidence intervals)

Recursive tree for neuronal density in V1 in AS

Supplemental Figure 1c: Recursive tree and relative importance metrics for determining neuronal density in V1 
in AS. The variables collectively explained 64.57% of the observed variance. The differential contributions of 
glial cell density in V1 (V1.g), CrbGc, brain mass (BrM), body mass (BdM), encephalization quotient (EQ), and 
gestation length (GstLth) are shown to be significantly greater than those of neuronal density in CA1-3 (CA.n), 
and both volumetric measurements of the dentate gyrus (StrGr, StrMol), according to the metrics pmvd and 
first. The 95% CI of the differential contribution of neuronal density in CA1-3 are shown to include zero for all 
metrics. StrGr is shown to be the foremost contributor to variance in neuronal density in V1, with glial cell 
density in V1 making an equally great contribution in species with a large StrGr (>5.25x109µm3). Neuronal 
density in CA1-3 is shown to an important contributor at a terminal node, in species with a small StrGr 
(<5.25x109µm3) and a short gestation length (<116d). The model is not shown to be complex.



Recursive tree for glia-neuron ratio in V1

Relative importances for neuronal density in CA1-3 in AS
(with 95% bootstrap confidence intervals)

Recursive tree for neuronal density in CA1-3 in AS

Supplemental Figure 1d: Recursive tree and relative importance metrics for determining neuronal density in CA1-3 in 
AS. The variables collectively explained 71.4% of the observed variance. The differential contributions of glial cell 
density in CA1-3 (CA.g), StrGr, StrMol, and gestation length (GstLth) are shown to be significantly greater than the 
other variables according to the metrics pmvd and last, and CrbGC is shown to make a significantly greater 
contribution than neuronal density in V1 (V1.n), brain mass, body mass, and EQ according to the metric pmvd. The 
95% CI of the differential contribution of neuronal density in V1 included for all metrics. The recursive tree shows 
gestation length to be the foremost and greatest contributor to variance in neuronal density in CA1-3. Glial cell 
density in CA1-3 is shown to become important at a terminal node, in species with a long gestation length (>45d), 
large CrbGC (>5.62x1011µm3), and small body mass (<25kg).  



Recursive tree for glial cell density in V1 in AS

Supplemental Figure 1e: Recursive tree and relative importance metrics for determining glial cell density in V1 in AS. 
The variables collectively explained 31.02% of the observed variance. The differential contributions of neuronal density 
in V1 (V1.n) and glial cell density in CA1-3 (CA.g) are shown to be significantly greater than those from all other 
variables according to all metrics. The contribution of gestation length is shown to be significantly greater than that of 
all other variables, except V1.n and CA.g, for the metric last. The 95% CI of the contribution of EQ are shown to 
include zero for all metrics. The recursive tree shows neuronal density in V1 to be the foremost and greatest 
contributor to variance. The penultimate contribution is shown to be from glial cell density in CA1-3, in species with 
both a small (<260015 cells/mm3) and large (>260015 cells/mm3) neuronal density. Gestation length is shown to 
contribute in species with both a small (76736 cells/mm3) and large (76736 cells/mm3) glial cell density in CA1-3. These 
nodes suggest the model may be complex. 

Relative importances for glial cell density in V1 in AS
(with 95% bootstrap confidence intervals)



Recursive tree for glial cell density in CA1-3 in AS

Relative importances for glial cell density in CA1-3 in AS
(with 95% bootstrap confidence intervals)

Supplemental Figure 1f: Recursive tree and relative importance metrics for determining glial cell density in CA1-3 in 
AS. The variables collectively explained 45.83% of the observed variance. The differential contributions of neuronal 
density in CA1-3 (CA.n) and glial cell density in V1 (V1.g) are shown to be significantly greater than those from all 
other variables according to the metrics lmg and last. The recursive tree shows brain mass to be the foremost and 
greatest contributor to variance in glial cell density in CA1-3. Neuronal density in CA1-3 is shown to become an 
important contributor in species with a small brain mass (>5.37g), and glial cell density in V1 is shown to become 
important in species with a small brain mass and large neuronal density (>56885 cells/mm3). The recursive tree model 
is not complex.  



Relative importances for glia-neuron ratio in V1 in Carnivores
(with 95% bootstrap confidence intervals)

Supplemental Figure 1g: Recursive tree and relative importance metrics for determining glia-neuron ratio in V1 in 
Carnivora. The branch lengths in the recursive tree are representative of the deviance explained by each variable. The 
variables collectively explained 82.91% of the observed variance. The contribution of glia-neuron ratio in CA1-3 
(CA.GNI) is shown to be significantly greater than that of any of the other variables for the metrics lmg, pmvd, and last. 
The recursive tree shows CA.GNI to be the foremost and greatest contributor to variance in glia-neuron ratio in V1, 
with StrMol becoming a significant contributor in species with a low CA.GNI (<0.51) and CrbGc becoming a significant 
contributor in species with a large CA.GNI (>0.51). All variables in the recursive tree models are presented as log-
transformed. Abbreviations: BdM, body mass (kg); BrM, brain mass (g); CA.g, glial cell density in CA1-3 (cells/mm3); 
CA.GNI, glia-neuron ratio in CA1-3; CA.n, neuronal density in CA1-3 (cells/mm3); CrbGc, volumetric estimate of the 
granule cell layer of the cerebellum (µm3); EQ, encephalization quotient; GstLth, gestation length (days); StrGr, 
volumetric estimate of the stratum granulosum (µm3); StrMol, volumetric estimate of the stratum moleculare (µm3); 
V1.g, glial cell density in V1 (cells/mm3); V1.GNI, glia-neuron ratio in V1; V1.n, neuronal density in V1 (cells/mm3).

Recursive tree for glia-neuron ratio in CA1-3 in Carnivores



Recursive tree for glia-neuron ratio in CA1-3 in Carnivores

Supplemental Figure 1h: Recursive tree and relative importance metrics for determining glia-neuron ratio in CA1-3 in 
Carnivora. The variables collectively explained 85.83% of the observed variance. The contribution of glia-neuron ratio 
in V1 (V1.GNI) is shown to be significantly greater than that of any other variable for the metrics lmg, pmvd, and last. 
Gestation length (GstLth) is shown to contribute significantly more to the observed variance in than brain mass (BrM), 
body mass (BdM), and EQ, and CrbGc for the metrics pmvd and last. The recursive tree model shows gestation length 
to be the foremost and greatest contributor to variance in glia-neuron ratio in V1. However, V1.GNI is shown to be an 
important contributor in species with both a short (<81d) and long (>81d) gestation length, indicating that the model 
may be complex.

Relative importances for glia-neuron ratio in CA1-3 in Carnivores
(with 95% bootstrap confidence intervals)



Recursive tree for neuronal density in V1 in Carnivores

Supplemental Figure 1i: Recursive tree and relative importance metrics for determining neuronal density in V1 in 
Carnivora. The variables collectively explained 91.21% of the observed variance. The contribution to variance in 
neuronal density in CA1-3 of CrbGC was significantly greater than that of the other variables for the metric pmvd. The 
differential contributions of all the variables, except EQ, are not shown to be significantly different (i.e., the 95% CI of 
the differences between their contributions included zero) for the metrics lmg and first. The recursive tree shows 
CrbGC to be the foremost and greatest contributor to variance in neuronal density in V1. Neuronal density in CA1-3 
(CA.n) is shown to become an important contributor in species with a small CrbGc (<6.68x1011µm3), and body mass is 
shown to become an important contributor in species with a large CrbGc (>6.68x1011µm3). Glial cell density in V1 
(V1.g) is shown to become an important contributor in species with a small CrbGc (<6.68x1011µm3) and a small CA.n 
(211349 cells/mm3). 

Relative importances for neuronal density in V1 in Carnivores
(with 95% bootstrap confidence intervals)



Relative importances for neuronal density in CA1-3 in Carnivores
(with 95% bootstrap confidence intervals)

Recursive tree for neuronal density in CA1-3 in Carnivores

Supplemental Figure 1j: Recursive tree and relative importance metrics for determining neuronal density in CA1-3 in 
Carnivora. The variables collectively explained 79.1% of the observed variance. The contribution of CrbGC to variance 
in neuronal density in CA1-3 is shown to be significantly greater than that from the other variables and the differential 
contributions of glial cell density in CA1-3 (CA.g), StrGr, and gestation length (GstLth) are shown to be significantly 
greater than those from the other variables, except CA.g, for the metric first. The differential contributions of CA.g, 
CrbGC, and gestation length are shown to be significantly greater than the contributions from the other variables for 
the metric last. The recursive tree shows gestation length to be the foremost and greatest contributor to variance in 
neuronal density in CA1-3, with CrbGC becoming an important contributor in species with a short gestation length 
(<64d) and body mass (BdM) becoming an important contributor in species with a long gestation length (>64d). 



Recursive tree for glial cell density in V1 in Carnivores

Relative importances for glial cell density in V1 in Carnivores
(with 95% bootstrap confidence intervals)

Supplemental Figure 1k: Recursive tree and relative importance metrics for determining glial cell density in V1 in 
Carnivora. The variables collectively explained 87.74% of the observed variance. The contribution to variance of glial 
cell density in CA1-3 (CA.g) is significantly greater than the differential contributions of the other variables for all 
metrics. The contribution of neuronal density in V1 (V1.n) is significantly greater than that of the other variables, 
except CA.g, for the metrics lmg and first. The recursive tree shows CA.g to be the foremost and greatest contributor 
to variance in glial cell density in V1. StrMol becomes an important contributor in species with a large CA.g (>49545 
cells/mm3), and V1.n then becomes important in species with a small StrMol (<1.8x1010µm3).  



Recursive tree for glial cell density in CA1-3 in Carnivores

Relative importances for glial cell density in CA1-3 in Carnivores
(with 95% bootstrap confidence intervals)

Supplemental Figure 1l: Recursive tree and relative importance metrics for determining glial cell density in CA1-3 in 
Carnivora. The variables collectively explained 88.68% of the observed variance. The contribution of glial cell density 
in V1 (V1.g) is shown to be significantly greater than that of other variables for all relative importance metrics. The 
contribution of neuronal density in CA1-3 (CA.n) is shown to be significantly greater than that of other variables, 
except CA.g, for the metrics lmg, last, and first. The recursive tree shows V1.g to be the foremost and greatest 
contributor to variance in glial cell density in CA1-3, with CrbGC and brain mass (BrM) becoming important 
contributors in species with a large V1.g (54325 cells/mm3). 



Recursive tree for glia-neuron ratio in V1 in Primates

Relative importances for glia-neuron ratio in V1 in Primates
(with 95% bootstrap confidence intervals)

CA.GNI    StrGr      StrMol    CrbGc      BrM        BdM        EQ       GstLth

Supplemental Figure 1m: Recursive tree and relative importance metrics for determining glia-neuron ratio in V1 in 
Primates. The branch lengths in the recursive tree are representative of the deviance explained by each variable. The 
variables collectively explained 28.79% of the observed variance. The contribution of CrbGc is shown to be 
significantly greater than that of any of the other variables for the metrics lmg, pmvd, and last. The recursive tree 
shows StrGr to be the foremost contributor to variance in glia-neuron ratio in V1, with EQ becoming an important 
contributor in species with a small StrGr (<4.96x109µm3) All variables in the recursive tree models are presented as 
log-transformed. Abbreviations: BdM, body mass (kg); BrM, brain mass (g); CA.g, glial cell density in CA1-3 
(cells/mm3); CA.GNI, glia-neuron ratio in CA1-3; CA.n, neuronal density in CA1-3 (cells/mm3); CrbGc, volumetric 
estimate of the granule cell layer of the cerebellum (µm3); EQ, encephalization quotient; GstLth, gestation length 
(days); StrGr, volumetric estimate of the stratum granulosum (µm3); StrMol, volumetric estimate of the stratum 
moleculare (µm3); V1.g, glial cell density in V1 (cells/mm3); V1.GNI, glia-neuron ratio in V1; V1.n, neuronal density in 
V1 (cells/mm3).

CA.GNI    StrGr      StrMol    CrbGc      BrM        BdM        EQ       GstLth

CA.GNI    StrGr      StrMol    CrbGc      BrM        BdM        EQ       GstLth CA.GNI    StrGr      StrMol    CrbGc      BrM        BdM        EQ       GstLth



Relative importances for glia-neuron ratio in CA1-3 in Primates
(with 95% bootstrap confidence intervals)

Recursive tree for glia-neuron ratio in CA1-3 in Primates

  V1.GNI    StrGr     StrMol    CrbGc      BrM        BdM        EQ       GstLth

Supplemental Figure 1n: Recursive tree and relative importance metrics for determining glia-neuron ratio in CA1-3 in 
Primates. The variables collectively explained 32.28% of the observed variance. The contribution of gestation length 
(GstLth) is shown to be significantly greater than that of any other variable for the metrics lmg, pmvd, and last. The 
recursive tree model shows body mass (BdM) to be the foremost and greatest contributor to variance, with gestation 
length and StrGr becoming important contributors in species with small (<4.68kg) and large (>4.68kg) body masses, 
respectively.

  V1.GNI    StrGr     StrMol    CrbGc      BrM        BdM        EQ       GstLth

  V1.GNI    StrGr     StrMol    CrbGc      BrM        BdM        EQ       GstLth

  V1.GNI    StrGr     StrMol    CrbGc      BrM        BdM        EQ       GstLth



Recursive tree for neuronal density in V1 in Primates

Relative importances for neuronal density in V1 in Primates
(with 95% bootstrap confidence intervals)

 V1.g      CA.n    StrGr   StrMol   CrbGc    BrM      BdM       EQ      GstLth

 V1.g      CA.n    StrGr   StrMol   CrbGc    BrM      BdM       EQ      GstLth

 V1.g      CA.n    StrGr   StrMol   CrbGc    BrM      BdM       EQ      GstLth

 V1.g      CA.n    StrGr   StrMol   CrbGc    BrM      BdM       EQ      GstLth

Supplemental Figure 1o: Recursive tree and relative importance metrics for determining neuronal density in V1 in 
Primates. The variables collectively explained 53.83% of the observed variance. The differential contributions of glial 
cell density in V1 (V1.g) and CrbGc are shown to be significantly greater than those of other variables for the metric 
last, while the differential contributions of V1.g and gestation length (GstLth) are shown to be significantly greater than 
those of other variables for the metric first. The 95% CI of the contributions of both volumetric estimates of the dentate 
gyrus include zero for the metrics pmvd, first, and last. The recursive tree shows gestation length to be the foremost 
and greatest contributor to variance, with V1.g and StrGr becoming important contributor in species with short (<62d) 
and long (>62d) gestation lengths, respectively. However, the appearance at nodes on either side of gestation length 
and on either side of StrGr indicates that the model may be complex.



Relative importances for neuronal density in CA1-3 in Primates
(with 95% bootstrap confidence intervals)

Recursive tree for neuronal density in CA1-3 in Primates

 CA.g      V1.n    StrGr   StrMol   CrbGc    BrM      BdM       EQ      GstLth

 CA.g      V1.n    StrGr   StrMol   CrbGc    BrM      BdM       EQ      GstLth  CA.g      V1.n    StrGr   StrMol   CrbGc    BrM      BdM       EQ      GstLth

 CA.g      V1.n    StrGr   StrMol   CrbGc    BrM      BdM       EQ      GstLth

Supplemental Figure 1p: Recursive tree and relative importance metrics for determining neuronal density in CA1-3 in 
Primates. The variables collectively explained 65.26% of the observed variance. The contribution to variance in 
neuronal density in CA-13 of glial cell density in CA1-3 (CA.g) is shown to be significantly greater than that of the other 
variables for the metrics lmg, pmvd, and last. The contribution of neuronal density in V1 (V1.n) is shown to be 
insignificant for all metrics. The recursive tree shows StrGr to be the foremost contributor to variance in neuronal 
density in CA1-3, with brain mass becoming an important contributor in species with a small StrGr (<5.62x109µm3), and 
then gestation length (GstLth) becoming an important contributor in species with a large brain mass (>6.1g). 



Recursive tree for glial cell density in V1 in Primates

Relative importances for glial cell density in V1 in Primates
(with 95% bootstrap confidence intervals)

   CA.n     V1.g     StrGr   StrMol   CrbGc    BrM      BdM       EQ      GstLth

   CA.n     V1.g     StrGr   StrMol   CrbGc    BrM      BdM       EQ      GstLth

   CA.n     V1.g     StrGr   StrMol   CrbGc    BrM      BdM       EQ      GstLth

  CA.n     V1.g     StrGr   StrMol   CrbGc    BrM      BdM       EQ      GstLth

Supplemental Figure 1q: Recursive tree and relative importance metrics for determining glial cell density in V1 in 
Primates. The variables collectively explained 32.45% of the observed variance. The contribution of neuronal density 
in V1 (V1.n) is shown to be significantly greater than that of other variables for all metrics. The contribution of CrbGC 
is slightly, but still significantly, greater than that of other variables, except V1.n, for the metrics lmg, pmvd, and last. 
The 95% CI of the differential contributions of glial cell density in CA1-3 (CA.g) and both volumetric estimates of the 
dentate gyrus include zero for all metrics. The recursive tree shows brain mass (BrM) to be the foremost contributor to 
variance. In species with a large brain mass (>79g), V1.n becomes an important contributor. In species with a small 
brain mass (<79g), CrbGC becomes an important contributor, followed by gestation length in species with a small 
CrbGC (<3.31x1011µm3). 



Recursive tree for glial cell density in CA1-3 in Primates

Relative importances for glial cell density in CA1-3 in Primates
(with 95% bootstrap confidence intervals)

   V1.n      CA.g     StrGc   StrMol   CrbGc    BrM      BdM       EQ      GstLth

Supplemental Figure 1r: Recursive tree and relative importance metrics for determining glial cell density in CA1-3 in 
Primates. The variables collectively explained 51.14% of the observed variance. The contribution of neuronal density 
in CA1-3 (CA.n) is shown to be significantly greater than that of other variables for all metrics. The contribution of 
gestation length (GstLth) is shown to be significantly greater than that of other variables, except CA.n, for metrics 
pmvd and last. The recursive tree shows brain mass to be the foremost contributor to variance in glial cell density in 
CA1-3, followed by CA.n in species with large brains (>6.1g). Glial cell density in V1 becomes an important contributor 
at a terminal node in species with high neuronal density (>46885cells/mm3) small brains (>68g). 

   CA.n     V1.g     StrGr   StrMol   CrbGc    BrM      BdM       EQ      GstLth

   CA.n     V1.g     StrGr   StrMol   CrbGc    BrM      BdM       EQ      GstLth     CA.n     V1.g     StrGr   StrMol   CrbGc    BrM      BdM       EQ      GstLth

   CA.n     V1.g     StrGr   StrMol   CrbGc    BrM      BdM       EQ      GstLth


