25 research outputs found

    Fenofibrate administration reduces alcohol and Saccharin Intake in rats: possible effects at peripheral and central levels

    No full text
    We have previously shown that the administration of fenofibrate to high-drinker UChB rats markedly reduces voluntary ethanol intake. Fenofibrate is a peroxisome proliferator-activated receptor alpha (PPAR a) agonist, which induces the proliferation of peroxisomes in the liver, leading to increases in catalase levels that result in acetaldehyde accumulation at aversive levels in the blood when animals consume ethanol. In these new studies, we aimed to investigate if the effect of fenofibrate on ethanol intake is produced exclusively in the liver (increasing catalase and systemic levels of acetaldehyde) or there might be additional effects at central level. High drinker rats (UChB) were allowed to voluntary drink 10% ethanol for 2 months. Afterward, a daily dose of fenofibrate (25, 50 or 100 mg/kg/day) or vehicle (as control) was administered orally for 14 days. Voluntary ethanol intake was recorded daily. After that time, animals were deprived of ethanol access for 24 h and administered with an oral dose of ethanol (1 g/kg) for acetaldehyde determination in blood. Fenofibrate reduced ethanol voluntary intake by 60%, in chronically drinking rats, at the three doses tested. Acetaldehyde in the blood rose up to between 80 mu M and 100 mu M. Considering the reduction of ethanol consumption, blood acetaldehyde levels and body weight evolution, the better results were obtained at a dose of 50 mg fenofibrate/kg/day. This dose of fenofibrate also reduced the voluntary intake of 0.2% saccharin by 35% and increased catalase levels 2.5-fold in the liver but showed no effects on catalase levels in the brain. To further study if fenofibrate administration changes the motivational properties of ethanol, a conditioned-place preference experiment was carried out. Animals treated with fenofibrate (50 mg/kg/day) did not develop ethanol-conditioned place preference (CPP). In an additional experiment, chronically ethanol-drinking rats underwent two cycles of ethanol deprivation/reaccess, and fenofibrate (50 mg/kg/day) was given only in deprivation periods; under this paradigm, fenofibrate was also able to generate a prolonged (30 days) decreasing of ethanol consumption, suggesting some effect beyond the acetaldehydegenerated aversion. In summary, reduction of ethanol intake by fenofibrate appears to be a consequence of a combination of catalase induction in the liver and central pharmacological effects.Fondo Nacional de Desarrollo Cientifico y Tecnologico (FONDECYT), 1150850 / 11130241 / Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT), ACT141

    Lip-like genes in Phanerochaete sordida and Ceriporiopsis subvermispora, white rot fungi with no detectable lignin peroxidase activity.

    No full text
    Lignin peroxidase-like genes were PCR amplified from Phanerochaete sordida and Ceriporiopsis subvermispora, fungi lacking lignin peroxidase (LiP) activity. Amplification products were highly similar to previously described LiP genes. Using reverse transcription-coupled PCR a LiP-like cDNA clone was amplified from P. sordida RNA. In contrast, no evidence was obtained for transcription of C. subvermispora LiP genes

    Gene specific modifications unravel ethanol and acetaldehyde actions

    Get PDF
    Ethanol is metabolized into acetaldehyde mainly by the action of alcohol dehydrogenase in the liver, while mainly by the action of catalase in the brain. Aldehyde dehydrogenase-2 metabolizes acetaldehyde into acetate in both organs. Gene specific modifications reviewed here show that an increased liver generation of acetaldehyde (by transduction of a gene coding for a high-activity liver alcohol dehydrogenase ADH1(*)B2) leads to increased blood acetaldehyde levels and aversion to ethanol in animals. Similarly aversive is an increased acetaldehyde level resulting from the inhibition of liver aldehyde dehydrogenase-2 (ALDH2) synthesis (by an antisense coding gene against aldh2 mRNA). The situation is diametrically different when acetaldehyde is generated in the brain. When the brain ventral tegmental area (VTA) is endowed with an increased ability to generate acetaldehyde (by transfection of liver rADH) the reinforcing effects of ethanol are increased, while a highly specific inhibition of catalase synthesis (by transduction of a shRNA anti catalase mRNA) virtually abolishes the reinforcing effects of ethanol as seen by a complete abolition of ethanol intake in rats bred for generations as high ethanol drinkers. Data shows two divergent effects of increases in acetaldehyde generation: aversive in the periphery but reinforcing in the brain

    Gene and antisense delivery in alcoholism research

    No full text
    This article represents the proceedings of a symposium at the 2001 annual meeting of the Research Society on Alcoholism in Montreal, Canada. Drs. Yedy Israel and Fulton Crews were organizers and co-chairpersons. The presentations were (1) Introduction to the symposium, by Yedy Israel; (2) Gene delivery to the brain, by Fulton T. Crews; (3) Gene therapy in alcoholic liver injury, by Ronald Thurman; and (4) Antisense oligonucleotides and antisense-gene delivery, by Yedy Israel
    corecore