146 research outputs found
Removal of luminal content protects the small intestine during hemorrhagic shock but is not sufficient to prevent lung injury.
The small intestine plays a key role in the pathogenesis of multiple organ failure following circulatory shock. Current results show that reduced perfusion of the small intestine compromises the mucosal epithelial barrier, and the intestinal contents (including pancreatic digestive enzymes and partially digested food) can enter the intestinal wall and transport through the circulation or mesenteric lymph to other organs such as the lung. The extent to which the luminal contents of the small intestine mediate tissue damage in the intestine and lung is poorly understood in shock. Therefore, rats were assigned to three groups: No-hemorrhagic shock (HS) control and HS with or without a flushed intestine. HS was induced by reducing the mean arterial pressure (30 mmHg; 90 min) followed by return of shed blood and observation (3 h). The small intestine and lung were analyzed for hemorrhage, neutrophil accumulation, and cellular membrane protein degradation. After HS, animals with luminal contents had increased neutrophil accumulation, bleeding, and destruction of E-cadherin in the intestine. Serine protease activity was elevated in mesenteric lymph fluid collected from a separate group of animals subjected to intestinal ischemia/reperfusion. Serine protease activity was elevated in the plasma after HS but was detected in lungs only in animals with nonflushed lumens. Despite removal of the luminal contents, lung injury occurred in both groups as determined by elevated neutrophil accumulation, permeability, and lung protein destruction. In conclusion, luminal contents significantly increase intestinal damage during experimental HS, suggesting transport of luminal contents across the intestinal wall should be minimized
On the crosscorrelation between Gravitational Wave Detectors for detecting association with Gamma Ray Bursts
Crosscorrelation of the outputs of two Gravitational Wave (GW) detectors has
recently been proposed [1] as a method for detecting statistical association
between GWs and Gamma Ray Bursts (GRBs). Unfortunately, the method can be
effectively used only in the case of stationary noise. In this work a different
crosscorrelation algorithm is presented, which may effectively be applied also
in non-stationary conditions for the cumulative analysis of a large number of
GRBs. The value of the crosscorrelation at zero delay, which is the only one
expected to be correlated to any astrophysical signal, is compared with the
distribution of crosscorrelation of the same data for all non-zero delays
within the integration time interval. This background distribution is gaussian,
so the statistical significance of an experimentally observed excess would be
well-defined.
Computer simulations using real noise data of the cryogenic GW detectors
Explorer and Nautilus with superimposed delta-like signals were performed, to
test the effectiveness of the method, and theoretical estimates of its
sensitivity compared to the results of the simulation. The effectiveness of the
proposed algorithm is compared to that of other cumulative techniques, finding
that the algorithm is particularly effective in the case of non-gaussian noise
and of a large (100-1000s) and unpredictable delay between GWs and GRBs.Comment: 7 pages, 4 figures, 1 table. Submitted by Phys. Rev.
Search for correlation between GRB's detected by BeppoSAX and gravitational wave detectors EXPLORER and NAUTILUS
Data obtained during five months of 2001 with the gravitational wave (GW)
detectors EXPLORER and NAUTILUS were studied in correlation with the gamma ray
burst data (GRB) obtained with the BeppoSAX satellite. During this period
BeppoSAX was the only GRB satellite in operation, while EXPLORER and NAUTILUS
were the only GW detectors in operation.
No correlation between the GW data and the GRB bursts was found. The
analysis, performed over 47 GRB's, excludes the presence of signals of
amplitude h >=1.2 * 10^{-18}, with 95 % probability, if we allow a time delay
between GW bursts and GRB within +-400 s, and h >= 6.5 * 10^{-19}, if the time
delay is within +- 5 s. The result is also provided in form of scaled
likelihood for unbiased interpretation and easier use for further analysis.Comment: 14 pages, 7 figures. Latex file, compiled with cernik.cls (provided
in the package
Correlation between Gamma-Ray bursts and Gravitational Waves
The cosmological origin of -ray bursts (GRBs) is now commonly
accepted and, according to several models for the central engine, GRB sources
should also emit at the same time gravitational waves bursts (GWBs). We have
performed two correlation searches between the data of the resonant
gravitational wave detector AURIGA and GRB arrival times collected in the BATSE
4B catalog. No correlation was found and an upper limit \bbox{} on the averaged amplitude of gravitational waves
associated with -ray bursts has been set for the first time.Comment: 7 pages, 3 figures, submitted to Phys. Rev.
Morphology of supported polymer electrolyte ultra-thin films: a numerical study
Morphology of polymer electrolytes membranes (PEM), e.g., Nafion, inside PEM
fuel cell catalyst layers has significant impact on the electrochemical
activity and transport phenomena that determine cell performance. In those
regions, Nafion can be found as an ultra-thin film, coating the catalyst and
the catalyst support surfaces. The impact of the hydrophilic/hydrophobic
character of these surfaces on the structural formation of the films has not
been sufficiently explored yet. Here, we report about Molecular Dynamics
simulation investigation of the substrate effects on the ionomer ultra-thin
film morphology at different hydration levels. We use a mean-field-like model
we introduced in previous publications for the interaction of the hydrated
Nafion ionomer with a substrate, characterized by a tunable degree of
hydrophilicity. We show that the affinity of the substrate with water plays a
crucial role in the molecular rearrangement of the ionomer film, resulting in
completely different morphologies. Detailed structural description in different
regions of the film shows evidences of strongly heterogeneous behavior. A
qualitative discussion of the implications of our observations on the PEMFC
catalyst layer performance is finally proposed
Initial operation of the International Gravitational Event Collaboration
The International Gravitational Event Collaboration, IGEC, is a coordinated
effort by research groups operating gravitational wave detectors working
towards the detection of millisecond bursts of gravitational waves. Here we
report on the current IGEC resonant bar observatory, its data analysis
procedures, the main properties of the first exchanged data set. Even though
the available data set is not complete, in the years 1997 and 1998 up to four
detectors were operating simultaneously. Preliminary results are mentioned.Comment: 8 pages, 2 figures, 3 tables; Proceeding of the GWDAW'99. Submitted
to the International Journal of Modern Physic
All-sky search of NAUTILUS data
A search for periodic gravitational-wave signals from isolated neutron stars
in the NAUTILUS detector data is presented. We have analyzed half a year of
data over the frequency band Hz/s and over the entire sky. We have divided the
data into 2 day stretches and we have analyzed each stretch coherently using
matched filtering. We have imposed a low threshold for the optimal detection
statistic to obtain a set of candidates that are further examined for
coincidences among various data stretches. For some candidates we have also
investigated the change of the signal-to-noise ratio when we increase the
observation time from two to four days. Our analysis has not revealed any
gravitational-wave signals. Therefore we have imposed upper limits on the
dimensionless gravitational-wave amplitude over the parameter space that we
have searched. Depending on frequency, our upper limit ranges from to . We have attempted a statistical
verification of the hypotheses leading to our conclusions. We estimate that our
upper limit is accurate to within 18%.Comment: LaTeX, 12 page
A systematic, intensive statistical investigation of data from the Comprehensive Analysis of Reported Drugs (CARD) for compliance and illicit opioid abstinence in substance addiction treatment with buprenorphine/naloxone
BACKGROUND: Buprenorphine and naloxone (bup/nal), a combination partial mu receptor agonist and low-dose delta mu antagonist, is presently recommended and used to treat opioid-use disorder. However, a literature review revealed a paucity of research involving data from urine drug tests that looked at compliance and abstinence in one sample.
METHOD: Statistical analysis of data from the Comprehensive Analysis of Reported Drugs (CARD) was used to assess compliance and abstinence during treatment in a large cohort of bup/nal patients attending chemical-dependency programs from eastern USA in 2010 and 2011.
RESULTS: Part 1: Bup/nal was present in 93.4% of first (n = 1,282; p \u3c.0001) and 92.4% of last (n = 1,268; p \u3c.0001) urine samples. Concomitantly, unreported illicit drugs were present in 47.7% (n = 655, p =.0261) of samples. Patients who were compliant to the bup/nal prescription were more likely than noncompliant patients to be abstinent during treatment (p =.0012; odds ratio = 1.69 with 95% confidence interval (1.210, 2.354). Part 2: An analysis of all samples collected in 2011 revealed a significant improvement in both compliance (p \u3c 2.2 × 1
IGEC2: A 17-month search for gravitational wave bursts in 2005-2007
We present here the results of a 515 days long run of the IGEC2 observatory,
consisting of the four resonant mass detectors ALLEGRO, AURIGA, EXPLORER and
NAUTILUS. The reported results are related to the fourfold observation time
from Nov. 6 2005 until Apr. 14 2007, when Allegro ceased its operation. This
period overlapped with the first long term observations performed by the LIGO
interferometric detectors. The IGEC observations aim at the identification of
gravitational wave candidates with high confidence, keeping the false alarm
rate at the level of 1 per century, and high duty cycle, namely 57% with all
four sites and 94% with at least three sites in simultaneous observation. The
network data analysis is based on time coincidence searches over at least three
detectors: the four 3-fold searches and the 4-fold one are combined in a
logical OR. We exchanged data with the usual blind procedure, by applying a
unique confidential time offset to the events in each set of data. The
accidental background was investigated by performing sets of 10^8 coincidence
analyses per each detector configuration on off-source data, obtained by
shifting the time series of each detector. The thresholds of the five searches
were tuned so as to control the overall false alarm rate to 1/century. When the
confidential time shifts was disclosed, no gravitational wave candidate was
found in the on-source data. As an additional output of this search, we make
available to other observatories the list of triple coincidence found below
search thresholds, corresponding to a false alarm rate of 1/month.Comment: 10 pages, 8 figures Accepted for publication on Phys. Rev.
Results of the IGEC-2 search for gravitational wave bursts during 2005
The network of resonant bar detectors of gravitational waves resumed
coordinated observations within the International Gravitational Event
Collaboration (IGEC-2). Four detectors are taking part in this collaboration:
ALLEGRO, AURIGA, EXPLORER and NAUTILUS. We present here the results of the
search for gravitational wave bursts over 6 months during 2005, when IGEC-2 was
the only gravitational wave observatory in operation. The network data analysis
implemented is based on a time coincidence search among AURIGA, EXPLORER and
NAUTILUS, keeping the data from ALLEGRO for follow-up studies. With respect to
the previous IGEC 1997-2000 observations, the amplitude sensitivity of the
detectors to bursts improved by a factor about 3 and the sensitivity bandwidths
are wider, so that the data analysis was tuned considering a larger class of
detectable waveforms. Thanks to the higher duty cycles of the single detectors,
we decided to focus the analysis on three-fold observation, so to ensure the
identification of any single candidate of gravitational waves (gw) with high
statistical confidence. The achieved false detection rate is as low as 1 per
century. No candidates were found.Comment: 10 pages, to be submitted to Phys. Rev.
- …