127 research outputs found

    Pulmonary Function Decline in Amyotrophic Lateral Sclerosis

    Get PDF
    Background: There has been no comprehensive longitudinal study of pulmonary functions (PFTS) in ALS determining which measure is most sensitive to declines in respiratory muscle strength. Objective: To determine the longitudinal decline of PFTS in ALS and which measure supports Medicare criteria for NIV initiation first. Methods: Serial PFTs (maximum voluntary ventilation (MVV), maximum inspiratory pressure measured by mouth (MIP) or nasal sniff pressure (SNIP), maximum expiratory pressure (MEP), and Forced Vital Capacity (FVC)) were performed over 12 months on 73 ALS subjects to determine which measure showed the sentinel decline in pulmonary function. The rate of decline for each measure was determined as the median slope of the decrease over time. Medicare-based NIV initiation criteria were met if %FVC was ā‰¤ 50% predicted or MIP was ā‰¤ 60 cMH2O. Results: 65 subjects with at least 3 visits were included for analyses. All median slopes were significantly different than zero. MEP and sitting FVC demonstrated the largest rate of decline. Seventy subjects were analyzed for NIV initiation criteria, 69 met MIP criteria first; 11 FVC and MIP criteria simultaneously and none FVC criteria first. Conclusions: MEP demonstrated a steeper decline compared to other measures suggesting expiratory muscle strength declines earliest and faster and the use of airway clearance interventions should be initiated early. When Medicare criteria for NIV initiation are considered, MIP criteria are met earliest. These results suggest that pressure-based measurements are important in assessing the timing of NIV and the use of pulmonary clearance interventions

    Mapping the genetic architecture of gene expression in human liver

    Get PDF
    Genetic variants that are associated with common human diseases do not lead directly to disease, but instead act on intermediate, molecular phenotypes that in turn induce changes in higher-order disease traits. Therefore, identifying the molecular phenotypes that vary in response to changes in DNA and that also associate with changes in disease traits has the potential to provide the functional information required to not only identify and validate the susceptibility genes that are directly affected by changes in DNA, but also to understand the molecular networks in which such genes operate and how changes in these networks lead to changes in disease traits. Toward that end, we profiled more than 39,000 transcripts and we genotyped 782,476 unique single nucleotide polymorphisms (SNPs) in more than 400 human liver samples to characterize the genetic architecture of gene expression in the human liver, a metabolically active tissue that is important in a number of common human diseases, including obesity, diabetes, and atherosclerosis. This genome-wide association study of gene expression resulted in the detection of more than 6,000 associations between SNP genotypes and liver gene expression traits, where many of the corresponding genes identified have already been implicated in a number of human diseases. The utility of these data for elucidating the causes of common human diseases is demonstrated by integrating them with genotypic and expression data from other human and mouse populations. This provides much-needed functional support for the candidate susceptibility genes being identified at a growing number of genetic loci that have been identified as key drivers of disease from genome-wide association studies of disease. By using an integrative genomics approach, we highlight how the gene RPS26 and not ERBB3 is supported by our data as the most likely susceptibility gene for a novel type 1 diabetes locus recently identified in a large-scale, genome-wide association study. We also identify SORT1 and CELSR2 as candidate susceptibility genes for a locus recently associated with coronary artery disease and plasma low-density lipoprotein cholesterol levels in the process. Ā© 2008 Schadt et al

    Is dignity therapy feasible to enhance the end of life experience for people with motor neurone disease and their family carers?

    Get PDF
    Background: Development of interventions that address psychosocial and existential distress in people with motor neurone disease (MND) or that alleviate caregiver burden in MND family carers have often been suggested in the research literature. Dignity therapy, which was developed to reduce psychosocial and existential distress at the end of life, has been shown to benefit people dying of cancer and their families. These results may not be transferable to people with MND. The objectives of this study are to assess the feasibility, acceptability and potential effectiveness of dignity therapy to enhance the end of life experience for people with motor neurone disease and their family carers. Methods/design: This is a cross-sectional study utilizing a single treatment group and a pre/post test design. The study population will comprise fifty people diagnosed with MND and their nominated family carers. Primarily quantitative outcomes will be gathered through measures assessed at baseline and at approximately one week after the intervention. Outcomes for participants include hopefulness, spirituality and dignity. Outcomes for family carers include perceived caregiver burden, hopefulness and anxiety/depression. Feedback and satisfaction with the intervention will be gathered through a questionnaire. Discussion: This detailed research will explore if dignity therapy has the potential to enhance the end of life experience for people with MND and their family carers, and fill a gap for professionals who are called on to address the spiritual, existential and psychosocial needs of their MND patients and families

    Uncovering the Genetic Landscape for Multiple Sleep-Wake Traits

    Get PDF
    Despite decades of research in defining sleep-wake properties in mammals, little is known about the nature or identity of genes that regulate sleep, a fundamental behaviour that in humans occupies about one-third of the entire lifespan. While genome-wide association studies in humans and quantitative trait loci (QTL) analyses in mice have identified candidate genes for an increasing number of complex traits and genetic diseases, the resources and time-consuming process necessary for obtaining detailed quantitative data have made sleep seemingly intractable to similar large-scale genomic approaches. Here we describe analysis of 20 sleep-wake traits from 269 mice from a genetically segregating population that reveals 52 significant QTL representing a minimum of 20 genomic loci. While many (28) QTL affected a particular sleep-wake trait (e.g., amount of wake) across the full 24-hr day, other loci only affected a trait in the light or dark period while some loci had opposite effects on the trait during the light vs. dark. Analysis of a dataset for multiple sleep-wake traits led to previously undetected interactions (including the differential genetic control of number and duration of REM bouts), as well as possible shared genetic regulatory mechanisms for seemingly different unrelated sleep-wake traits (e.g., number of arousals and REM latency). Construction of a Bayesian network for sleep-wake traits and loci led to the identification of sub-networks of linkage not detectable in smaller data sets or limited single-trait analyses. For example, the network analyses revealed a novel chain of causal relationships between the chromosome 17@29cM QTL, total amount of wake, and duration of wake bouts in both light and dark periods that implies a mechanism whereby overall sleep need, mediated by this locus, in turn determines the length of each wake bout. Taken together, the present results reveal a complex genetic landscape underlying multiple sleep-wake traits and emphasize the need for a systems biology approach for elucidating the full extent of the genetic regulatory mechanisms of this complex and universal behavior

    Rare variant analyses validate known ALS genes in a multi-ethnic population and identifies ANTXR2 as a candidate in PLS

    Get PDF
    BackgroundAmyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting over 300,000 people worldwide. It is characterized by the progressive decline of the nervous system that leads to the weakening of muscles which impacts physical function. Approximately, 15% of individuals diagnosed with ALS have a known genetic variant that contributes to their disease. As therapies that slow or prevent symptoms continue to develop, such as antisense oligonucleotides, it is important to discover novel genes that could be targets for treatment. Additionally, as cohorts continue to grow, performing analyses in ALS subtypes, such as primary lateral sclerosis (PLS), becomes possible due to an increase in power. These analyses could highlight novel pathways in disease manifestation.MethodsBuilding on our previous discoveries using rare variant association analyses, we conducted rare variant burden testing on a substantially larger multi-ethnic cohort of 6,970 ALS patients, 166 PLS patients, and 22,524 controls. We used intolerant domain percentiles based on sub-region Residual Variation Intolerance Score (subRVIS) that have been described previously in conjunction with gene based collapsing approaches to conduct burden testing to identify genes that associate with ALS and PLS.ResultsA gene based collapsing model showed significant associations with SOD1, TARDBP, and TBK1 (ORā€‰=ā€‰19.18, pā€‰=ā€‰3.67ā€‰Ć—ā€‰10ā€“39; ORā€‰=ā€‰4.73, pā€‰=ā€‰2ā€‰Ć—ā€‰10ā€“10; ORā€‰=ā€‰2.3, pā€‰=ā€‰7.49ā€‰Ć—ā€‰10ā€“9, respectively). These genes have been previously associated with ALS. Additionally, a significant novel control enriched gene, ALKBH3 (pā€‰=ā€‰4.88ā€‰Ć—ā€‰10ā€“7), was protective for ALS in this model. An intolerant domain-based collapsing model showed a significant improvement in identifying regions in TARDBP that associated with ALS (ORā€‰=ā€‰10.08, pā€‰=ā€‰3.62ā€‰Ć—ā€‰10ā€“16). Our PLS protein truncating variant collapsing analysis demonstrated significant case enrichment in ANTXR2 (pā€‰=ā€‰8.38ā€‰Ć—ā€‰10ā€“6).ConclusionsIn a large multi-ethnic cohort of 6,970 ALS patients, collapsing analyses validated known ALS genes and identified a novel potentially protective gene, ALKBH3. A first-ever analysis in 166 patients with PLS found a candidate association with loss-of-function mutations in ANTXR2

    Amyotrophic Lateral Sclerosis: An Emerging Era of Collaborative Gene Discovery

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is the most common form of motor neuron disease (MND). It is currently incurable and treatment is largely limited to supportive care. Family history is associated with an increased risk of ALS, and many Mendelian causes have been discovered. However, most forms of the disease are not obviously familial. Recent advances in human genetics have enabled genome-wide analyses of single nucleotide polymorphisms (SNPs) that make it possible to study complex genetic contributions to human disease. Genome-wide SNP analyses require a large sample size and thus depend upon collaborative efforts to collect and manage the biological samples and corresponding data. Public availability of biological samples (such as DNA), phenotypic and genotypic data further enhances research endeavors. Here we discuss a large collaboration among academic investigators, government, and non-government organizations which has created a public repository of human DNA, immortalized cell lines, and clinical data to further gene discovery in ALS. This resource currently maintains samples and associated phenotypic data from 2332 MND subjects and 4692 controls. This resource should facilitate genetic discoveries which we anticipate will ultimately provide a better understanding of the biological mechanisms of neurodegeneration in ALS

    Bioinorganic Chemistry of Alzheimerā€™s Disease

    Get PDF

    Mouse hitchhiker mutants have spina bifida, dorso-ventral patterning defects and polydactyly: identification of Tulp3 as a novel negative regulator of the Sonic hedgehog pathway

    Get PDF
    The mammalian Sonic hedgehog (Shh) signalling pathway is essential for embryonic development and the patterning of multiple organs. Disruption or activation of Shh signalling leads to multiple birth defects, including holoprosencephaly, neural tube defects and polydactyly, and in adults results in tumours of the skin or central nervous system. Genetic approaches with model organisms continue to identify novel components of the pathway, including key molecules that function as positive or negative regulators of Shh signalling. Data presented here define Tulp3 as a novel negative regulator of the Shh pathway. We have identified a new mouse mutant that is a strongly hypomorphic allele of Tulp3 and which exhibits expansion of ventral markers in the caudal spinal cord, as well as neural tube defects and preaxial polydactyly, consistent with increased Shh signalling. We demonstrate that Tulp3 acts genetically downstream of Shh and Smoothened (Smo) in neural tube patterning and exhibits a genetic interaction with Gli3 in limb development. We show that Tulp3 does not appear to alter expression or processing of Gli3, and we demonstrate that transcriptional regulation of other negative regulators (Rab23, Fkbp8, Thm1, Sufu and PKA) is not affected. We discuss the possible mechanism of action of Tulp3 in Shh-mediated signalling in light of these new data

    Recent research on Gulf War illness and other health problems in veterans of the 1991 Gulf War: Effects of toxicant exposures during deployment

    Get PDF
    Veterans of Operation Desert Storm/Desert Shield - the 1991 Gulf War (GW) - are a unique population who returned from theater with multiple health complaints and disorders. Studies in the U.S. and elsewhere have consistently concluded that approximately 25-32% of this population suffers from a disorder characterized by symptoms that vary somewhat among individuals and include fatigue, headaches, cognitive dysfunction, musculoskeletal pain, and respiratory, gastrointestinal and dermatologic complaints. Gulf War illness (GWI) is the term used to describe this disorder. In addition, brain cancer occurs at increased rates in subgroups of GW veterans, as do neuropsychological and brain imaging abnormalities. Chemical exposures have become the focus of etiologic GWI research because nervous system symptoms are prominent and many neurotoxicants were present in theater, including organophosphates (OPs), carbamates, and other pesticides; sarin/cyclosarin nerve agents, and pyridostigmine bromide (PB) medications used as prophylaxis against chemical warfare attacks. Psychiatric etiologies have been ruled out. This paper reviews the recent literature on the health of 1991 GW veterans, focusing particularly on the central nervous system and on effects of toxicant exposures. In addition, it emphasizes research published since 2008, following on an exhaustive review that was published in that year that summarizes the prior literature (RACGWI, 2008). We conclude that exposure to pesticides and/or to PB are causally associated with GWI and the neurological dysfunction in GW veterans. Exposure to sarin and cyclosarin and to oil well fire emissions are also associated with neurologically based health effects, though their contribution to development of the disorder known as GWI is less clear. Gene-environment interactions are likely to have contributed to development of GWI in deployed veterans. The health consequences of chemical exposures in the GW and other conflicts have been called "toxic wounds" by veterans. This type of injury requires further study and concentrated treatment research efforts that may also benefit other occupational groups with similar exposure-related illnesses
    • ā€¦
    corecore