60 research outputs found

    Male Oxidative Stress Infertility (MOSI):proposed terminology and clinical practice guidelines for management of idiopathic male infertility

    Get PDF
    Despite advances in the field of male reproductive health, idiopathic male infertility, in which a man has altered semen characteristics without an identifiable cause and there is no female factor infertility, remains a challenging condition to diagnose and manage. Increasing evidence suggests that oxidative stress (OS) plays an independent role in the etiology of male infertility, with 30% to 80% of infertile men having elevated seminal reactive oxygen species levels. OS can negatively affect fertility via a number of pathways, including interference with capacitation and possible damage to sperm membrane and DNA, which may impair the sperm's potential to fertilize an egg and develop into a healthy embryo. Adequate evaluation of male reproductive potential should therefore include an assessment of sperm OS. We propose the term Male Oxidative Stress Infertility, or MOSI, as a novel descriptor for infertile men with abnormal semen characteristics and OS, including many patients who were previously classified as having idiopathic male infertility. Oxidation-reduction potential (ORP) can be a useful clinical biomarker for the classification of MOSI, as it takes into account the levels of both oxidants and reductants (antioxidants). Current treatment protocols for OS, including the use of antioxidants, are not evidence-based and have the potential for complications and increased healthcare-related expenditures. Utilizing an easy, reproducible, and cost-effective test to measure ORP may provide a more targeted, reliable approach for administering antioxidant therapy while minimizing the risk of antioxidant overdose. With the increasing awareness and understanding of MOSI as a distinct male infertility diagnosis, future research endeavors can facilitate the development of evidence-based treatments that target its underlying cause

    Male oxidative stress infertility (MOSI): proposed terminology and clinical practice guidelines for management of idiopathic male infertility

    Get PDF
    Despite advances in the field of male reproductive health, idiopathic male infertility, in which a man has altered semen characteristics without an identifiable cause and there is no female factor infertility, remains a challenging condition to diagnose and manage. Increasing evidence suggests that oxidative stress (OS) plays an independent role in the etiology of male infertility, with 30% to 80% of infertile men having elevated seminal reactive oxygen species levels. OS can negatively affect fertility via a number of pathways, including interference with capacitation and possible damage to sperm membrane and DNA, which may impair the sperm's potential to fertilize an egg and develop into a healthy embryo. Adequate evaluation of male reproductive potential should therefore include an assessment of sperm OS. We propose the term Male Oxidative Stress Infertility, or MOSI, as a novel descriptor for infertile men with abnormal semen characteristics and OS, including many patients who were previously classified as having idiopathic male infertility. Oxidation-reduction potential (ORP) can be a useful clinical biomarker for the classification of MOSI, as it takes into account the levels of both oxidants and reductants (antioxidants). Current treatment protocols for OS, including the use of antioxidants, are not evidence-based and have the potential for complications and increased healthcare-related expenditures. Utilizing an easy, reproducible, and cost-effective test to measure ORP may provide a more targeted, reliable approach for administering antioxidant therapy while minimizing the risk of antioxidant overdose. With the increasing awareness and understanding of MOSI as a distinct male infertility diagnosis, future research endeavors can facilitate the development of evidence-based treatments that target its underlying cause

    Aloe barbadensis: how a miraculous plant becomes reality

    Get PDF
    Aloe barbadensis Miller is a plant that is native to North and East Africa and has accompanied man for over 5,000 years. The aloe vera plant has been endowed with digestive, dermatological, culinary and cosmetic virtues. On this basis, aloe provides a range of possibilities for fascinating studies from several points of view, including the analysis of chemical composition, the biochemistry involved in various activities and its application in pharmacology, as well as from horticultural and economic standpoints. The use of aloe vera as a medicinal plant is mentioned in numerous ancient texts such as the Bible. This multitude of medicinal uses has been described and discussed for centuries, thus transforming this miracle plant into reality. A summary of the historical uses, chemical composition and biological activities of this species is presented in this review. The latest clinical studies involved in vivo and in vitro assays conducted with aloe vera gel or its metabolites and the results of these studies are reviewed

    Cerebrospinal fluid segregation optic neuropathy: an experimental model and a hypothesis

    Full text link
    AIM: To describe the histological changes in the optic nerve (ON) after experimental segregation of cerebrospinal fluid (CSF). METHODS: In seven sheep, a silicone band was placed around one ON to compress the subarachnoid space (SAS) surrounding the nerve, thus blocking the flow of CSF without compressing the ON itself. After 4 or 21 days, both the ligated and untouched ONs were removed and evaluated histologically. RESULTS: All treated ONs showed marked loss of axons, destruction of myelin and swelling of meningoepithelial cells, most pronounced in the proximal ON adjacent to the globe at the location most distant to the ligature. There was no significant difference in histological findings between the ONs that were ligated for 4 days and those with 21 days of ligature. CONCLUSION: CSF segregation in the ON by blocking the SAS leads within 4 days to severe nerve damage. The increasing severity of these changes with increasing distance from the site of the ligature argues against simple pressure- or microperfusion-dependent effects and supports the hypothesis that interruption of CSF flow in the SAS of the ON can produce damage due to a change of CSF flow and content

    The Tommy’s Clinical Decision Tool, a device for reducing the clinical impact of placental dysfunction and preterm birth : protocol for a mixed-methods early implementation evaluation study

    Get PDF
    Background Disparities in stillbirth and preterm birth persist even after correction for ethnicity and social deprivation, demonstrating that there is wide geographical variation in the quality of care. To address this inequity, Tommy’s National Centre for Maternity Improvement developed the Tommy’s Clinical Decision Tool, which aims to support the provision of “the right care at the right time”, personalising risk assessment and care according to best evidence. This web-based clinical decision tool assesses the risk of preterm birth and placental dysfunction more accurately than current methods, and recommends best evidenced-based care pathways in a format accessible to both women and healthcare professionals. It also provides links to reliable sources of pregnancy information for women. The aim of this study is to evaluate implementation of Tommy’s Clinical Decision Tool in four early-adopter UK maternity services, to inform wider scale-up. Methods The Tommy’s Clinical Decision Tool has been developed involving maternity service users and healthcare professionals in partnership. This mixed-methods study will evaluate: maternity service user and provider acceptability and experience; barriers and facilitators to implementation; reach (whether particular groups are excluded and why), fidelity (degree to which the intervention is delivered as intended), and unintended consequences. Data will be gathered over 25 months through interviews, focus groups, questionnaires and through the Tommy’s Clinical Decision Tool itself. The NASSS framework (Non-adoption or Abandonment of technology by individuals and difficulties achieving Scale-up, Spread and Sustainability) will inform data analysis. Discussion This paper describes the intervention, Tommy’s Clinical Decision Tool, according to TiDIER guidelines, and the protocol for the early adopter implementation evaluation study. Findings will inform future scale up. Trial registration This study was prospectively registered on the ISRCTN registry no. 13498237, on 31st January 2022
    corecore