167 research outputs found

    X-ray Diagnostics of Grain Depletion in Matter Accreting onto T Tauri Stars

    Full text link
    Recent analysis of high resolution Chandra X-ray spectra has shown that the Ne/O abundance ratio is remarkably constant in stellar coronae. Based on this result, we point out the utility of the Ne/O ratio as a discriminant for accretion-related X-rays from T Tauri stars, and for probing the measure of grain-depletion of the accreting material in the inner disk. We apply the Ne/O diagnostic to the classical T Tauri stars BP Tau and TW Hya--the two stars found to date whose X-ray emission appears to originate, at least in part, from accretion activity. We show that TW Hya appears to be accreting material which is significantly depleted in O relative to Ne. In constrast, BP Tau has an Ne/O abundance ratio consistent with that observed for post-T Tauri stars. We interpret this result in terms of the different ages and evolutionary states of the circumstellar disks of these stars. In the young BP Tau disk (age 0.6 Myr) dust is still present near the disk corotation radius and can be ionized and accreted, re-releasing elements depleted onto grains. In the more evolved TW Hya disk (age 10 Myr), evidence points to ongoing coagulation of grains into much larger bodies, and possibly planets, that can resist the drag of inward-migrating gas, and accreting gas is consequently depleted of grain-forming elements.Comment: 13 pages, 1 Figure, ApJ Letters, in pres

    Emission Line Variability of the Accreting Young Brown Dwarf 2MASSW J1207334-393254: From Hours to Years

    Full text link
    We have obtained a series of high-resolution optical spectra for the brown dwarf 2MASSW J1207334-393254 (2M1207) using the ESO Very Large Telescope with the UVES spectrograph during two consecutive observing nights (time resolution of ~12 min) and the Magellan Clay telescope with the MIKE spectrograph. Combined with previously published results, these data allow us to investigate changes in the emission line spectrum of 2M1207 on timescales of hours to years. Most of the emission line profiles of 2M1207 are broad, in particular that of Halpha, indicating that the dominant fraction of the emission must be attributed to disk accretion rather than to magnetic activity. From the Halpha 10% width we deduce a relatively stable accretion rate between 10^(-10.1...-9.8) Msun/yr for two nights of consecutive observations. Therefore, either the accretion stream is nearly homogeneous over (sub-)stellar longitude or the system is seen face-on. Small but significant variations are evident throughout our near-continuous observation, and they reach a maximum after ~8 h, roughly the timescale on which maximum variability is expected across the rotation cycle. Together with past measurements, we confirm that the accretion rate of 2M1207 varies by more than one order of magnitude on timescales of months to years. Such variable mass accretion yields a plausible explanation for the observed spread in the accretion rate vs. mass diagram. The magnetic field required to drive the funnel flow is on the order of a few hundred G. Despite the obvious presence of a magnetic field, no radio nor X-ray emission has been reported for 2M1207. Possibly strong accretion suppresses magnetic activity in brown dwarfs, similar to the findings for higher mass T Tauri stars.Comment: accepted for publication in Ap

    Profiles of Strong Permitted Lines in Classical T Tauri Stars

    Full text link
    We present a spectral analysis of 30 T Tauri stars observed with the Hamilton echelle spectrograph over more than a decade. One goal is to test magnetospheric accretion model predictions. Observational evidence previously published supporting the model, such as emission line asymmetry and a high frequency of redshifted absorption components, are considered. We also discuss the relation between different line forming regions and search for good accretion rate indicators. In this work we confirm several important points of the models, such as the correlation between accretion and outflow, broad emission components that are mostly central or slightly blueshifted and only the occasional presence of redshifted absorption. We also show, however, that the broad emission components supposedly formed in the magnetospheric accretion flow only partially support the models. Unlike the predictions, they are sometimes redshifted, and are mostly found to be symmetric. The published theoretical profiles do not have a strong resemblance to our observed ones. We emphasize the need for accretion models to include a strong turbulent component before their profiles will match the observations. The effects of rotation, and the outflow components, will also be needed to complete the picture.Comment: 25 pages including 9 figures, 3 tables, accepted for publication in the Astronomical Journa

    On the origin of ionising photons emitted by T Tauri stars

    Full text link
    We address the issue of the production of Lyman continuum photons by T Tauri stars, in an attempt to provide constraints on theoretical models of disc photoionisation. By treating the accretion shock as a hotspot on the stellar surface we show that Lyman continuum photons are produced at a rate approximately three orders of magnitude lower than that produced by a corresponding black body, and that a strong Lyman continuum is only emitted for high mass accretion rates. When our models are extended to include a column of material accreting on to the hotspot we find that the accretion column is extremely optically thick to Lyman continuum photons. Further, we find that radiative recombination of hydrogen atoms within the column is not an efficient means of producing photons with energies greater than 13.6eV, and find that an accretion column of any conceivable height suppresses the emission of Lyman continuum photons to a level below or comparable to that expected from the stellar photosphere. The photospheric Lyman continuum is itself much too weak to affect disc evolution significantly, and we find that the Lyman continuum emitted by an accretion shock is similarly unable to influence disc evolution significantly. This result has important consequences for models which use photoionisation as a mechanism to drive the dispersal of circumstellar discs, essentially proving that an additional source of Lyman continuum photons must exist if disc photoionisation is to be significant.Comment: 6 pages, 4 figures. Accepted for publication in MNRA

    A young double stellar cluster in a HII region, emerging from its parent molecular cloud

    Full text link
    We report the properties of a new young double stellar cluster in the region towards IRAS 07141-0920 contained in the HII region Sh2-294. High-resolution optical UBVRI and Halpha images, near-infrared JHKs and H2 filter images were used to make photometric and morphological studies of the point sources and the nebula seen towards Sh2-294. The optical images reveal an emission nebula with very rich morphological details, composed mainly of UV scattered light and of Halpha emission. Contrasting with the bright parts of the nebula, opaque, elongated patches are seen. Our optical photometry confirms that the illuminator of the nebula is likely to be a B0.5V star located at a distance of about 3.2 kpc. Our near-IR images reveal an embedded cluster, extending for about 2 pc and exhibiting sub-clustering: a denser, more condensed, sub-cluster surrounding the optical high-mass B0.5V illuminator star; and a more embedded, optically invisible, sub-cluster located towards the eastern, dark part of the nebula and including the luminous MSX source G224.1880+01.2407, a massive protostellar candidate that could be the origin of jets and extended features seen at 2.12 micron. The double cluster appears to be clearing the remaining molecular material of the parent cloud, creating patches of lower extinction and allowing some of the least reddened members to be detected in the optical images. We find 12 MS and 143 PMS members using 3 different methods: comparison with isochrones in optical colour-magnitude diagrams, detection of near-IR excess, and presence of Halpha emission. The most massive star fits a 4 Myr post-MS isochrone. The age of the optically selected PMS population is estimated to be 7-8 Myr. The IR-excess population shows sub-clustering on scales as small as 0.23 pc and is probably much younger.Comment: 15 pages, 16 figure

    Constraints on the ionizing flux emitted by T Tauri stars

    Full text link
    We present the results of an analysis of ultraviolet observations of T Tauri Stars (TTS). By analysing emission measures taken from the literature we derive rates of ionizing photons from the chromospheres of 5 classical TTS in the range ~10^41-10^44 photons/s, although these values are subject to large uncertainties. We propose that the HeII/CIV line ratio can be used as a reddening-independent indicator of the hardness of the ultraviolet spectrum emitted by TTS. By studying this line ratio in a much larger sample of objects we find evidence for an ionizing flux which does not decrease, and may even increase, as TTS evolve. This implies that a significant fraction of the ionizing flux from TTS is not powered by the accretion of disc material onto the central object, and we discuss the significance of this result and its implications for models of disc evolution. The presence of a significant ionizing flux in the later stages of circumstellar disc evolution provides an important new constraint on disc photoevaporation models.Comment: 8 pages, 5 figures. Accepted for publication in MNRA

    Interpretation of the Veiling of the Photospheric Spectrum for T Tauri Stars in Terms of an Accretion Model

    Full text link
    The problem on heating the atmospheres of T Tauri stars by radiation from an accretion shock has been solved. The structure and radiation spectrum of the emerging so-called hot spot have been calculated in the LTE approximation. The emission not only in continuum but also in lines has been taken into account for the first time when calculating the spot spectrum. Comparison with observations has shown that the strongest of these lines manifest themselves as narrow components of helium and metal emission lines, while the weaker ones decrease significantly the depth of photospheric absorption lines, although until now, this effect has been thought to be due to the emission continuum alone. The veiling by lines changes the depth of different photospheric lines to a very different degree even within a narrow spectral range. Therefore, the nonmonotonic wavelength dependence of the degree of veiling r found for some CTTS does not suggest a nontrivial spectral energy distribution of the veiling continuum. In general, it makes sense to specify the degree of veiling r only by providing the set of photospheric lines from which this quantity was determined. We show that taking into account the contribution of lines to the veiling of the photospheric spectrum can cause the existing estimates of the accretion rate onto T Tauri stars to decrease by several times, with this being also true for stars with a comparatively weakly veiled spectrum. Neglecting the contribution of lines to the veiling can also lead to appreciable errors in determining the effective temperature, interstellar extinction, radial velocity, and vsin(i)

    Evidence for Evolution Among Primordial Disks in the 5 Myr Old Upper Scorpius OB Association

    Full text link
    Moderate-resolution, near-infrared spectra between 0.8 and 5.2 microns were obtained for 12 late-type (K0-M3) disk-bearing members of the ~5 Myr old Upper Scorpius OB association using SpeX on the NASA Infrared Telescope Facility. For most sources, continuum excess emission first becomes apparent between ~2.2 and 4.5 microns and is consistent with that produced by single-temperature blackbodies having characteristic temperatures ranging from ~500 to 1300 K. The near-infrared spectra for 5 of 12 Upper Scorpius sources exhibit Pa-gamma, Pa-beta and Br-gamma emission, indicators of disk accretion. Using a correlation between Pa-beta and Br-gamma emission line luminosity and accretion luminosity, mass accretion rates (Mdot) are derived for these sources that range from Mdot = 3.5 X 10^{-10} to 1.5 X 10^{-8} MSun per yr. Merging the SpeX observations with Spitzer Space Telescope mid-infrared (5.4-37.0 micron) spectroscopy and 24 and 70 micron broadband photometry, the observed spectral energy distributions are compared with those predicted by two-dimensional, radiative transfer accretion disk models. Of the 9 Upper Scorpius sources examined in this analysis, 3 exhibit spectral energy distributions that are most consistent with models having inner disk radii that substantially exceed their respective dust sublimation radii. The remaining Upper Scorpius members possess spectral energy distributions that either show significant dispersion among predicted inner disk radii or are best described by models having inner disk rims coincident with the dust sublimation radius.Comment: 35 pages, 5 figures, accepted for publication in the Astronomical Journa

    Flickering in FU Orionis

    Get PDF
    We analyze new and published optical photometric data of FU Orionis, an eruptive pre-main sequence star. The outburst consists of a 5.5 mag rise at B with an e-folding timescale of roughly 50 days. The rates of decline at B and V are identical, 0.015 +- 0.001 mag per yr. Random fluctuations superimposed on this decline have an amplitude of 0.035 +- 0.005 mag at V and occur on timescales of 1 day or less. Correlations between V and the color indices U-B, B-V, and V-R indicate that the variable source has the optical colors of a G0 supergiant. We associate this behavior with small amplitude flickering of the inner accretion disk.Comment: 19 pages of text, 3 tables, and 6 figures to be published in the Astrophysical Journal, 10 March 200

    A Test of Pre-Main Sequence Evolutionary Models Across the Stellar/Substellar Boundary Based on Spectra of the Young Quadruple GG Tau

    Get PDF
    We present spatially separated optical spectra of the components of the young hierarchical quadruple GG Tau. Spectra of GG Tau Aa and Ab (separation 0".25 ~ 35 AU) were obtained with the Faint Object Spectrograph aboard the Hubble Space Telescope. Spectra of GG Tau Ba and Bb (separation 1".48 ~ 207 AU) were obtained with both the HIRES and the LRIS spectrographs on the W. M. Keck telescopes. The components of this mini-cluster, which span a wide range in spectral type (K7 - M7), are used to test both evolutionary models and the temperature scale for very young, low mass stars under the assumption of coeval formation. Of the evolutionary models tested, those of Baraffe et al. (1998, A&A, 337, 403) yield the most consistent ages when combined with a temperature scale intermediate between that of dwarfs and giants. The version of the Baraffe et al. models computed with a mixing length nearly twice the pressure scale height is of particular interest as it predicts masses for GG Tau Aa and Ab that are in agreement with their dynamical mass estimate. Using this evolutionary model and a coeval (at 1.5 Myrs) temperature scale, we find that the coldest component of the GG Tau system, GG Tau Bb, is substellar with a mass of 0.044 +/- 0.006 Msun. This brown dwarf companion is especially intriguing as it shows signatures of accretion, although this accretion is not likely to alter its mass significantly. GG Tau Bb is currently the lowest mass, spectroscopically confirmed companion to a T Tauri star, and is one of the coldest, lowest mass T Tauri objects in the Taurus-Auriga star forming region.Comment: 25 pages, 6 figures, accepted for publication in The Astrophysical Journa
    • …
    corecore