515 research outputs found

    Resistance to dislodgement: habitat and size-specific differences in morphology and tenacity in an intertidal snail

    Get PDF
    The authors quantified 1) shell size (defined as the maximum projected surface area, MPSA); 2) shell shape; 3) foot area; 4) maximum force to dislodge a snail in shear; and 5) tenacity (force per foot area required to dislodge) of the herbivorous Littorina obtusata. Wave-exposed snails were smaller (lower average MPSA), and were shorter and had larger foot area and greater dislodgement force than did protected snails of similar MPSA. The greater dislodgement force at the exposed site was due to larger foot area, not to greater tenacity. -from Author

    Constant regulation for stable CD8 T-cell functional avidity and its possible implications for cancer immunotherapy.

    Get PDF
    The functional avidity (FA) of cytotoxic CD8 T cells impacts strongly on their functional capabilities and correlates with protection from infection and cancer. FA depends on TCR affinity, downstream signaling strength, and TCR affinity-independent parameters of the immune synapse, such as costimulatory and inhibitory receptors. The functional impact of coreceptors on FA remains to be fully elucidated. Despite its importance, FA is infrequently assessed and incompletely understood. There is currently no consensus as to whether FA can be enhanced by optimized vaccine dose or boosting schedule. Recent findings suggest that FA is remarkably stable in vivo, possibly due to continued signaling modulation of critical receptors in the immune synapse. In this review, we provide an overview of the current knowledge and hypothesize that in vivo, codominant T cells constantly "equalize" their FA for similar function. We present a new model of constant FA regulation, and discuss practical implications for T-cell-based cancer immunotherapy

    DC-SCRIPT deficiency delays mouse mammary gland development and branching morphogenesis

    Get PDF
    Mammary glands are unique organs in which major adaptive changes occur in morphogenesis and development after birth. Breast cancer is the most common cancer and a major cause of mortality in females worldwide. We have previously identified the loss of expression of the transcription regulator DC-SCRIPT (Zfp366) as a prominent prognostic event in estrogen receptor positive breast cancer patients. DC-SCRIPT affects multiple transcriptional events in breast cancer cells, including estrogen and progesterone receptor-mediated transcription, and promotes CDKN2B-related cell cycle arrest. As loss of DC-SCRIPT expression appears an early event in breast cancer development, we here investigated the role of DC-SCRIPT in mammary gland development using wild-type and DC-SCRIPT knockout mice. Mice lacking DC-SCRIPT exhibited severe breeding problems and showed significant growth delay relative to littermate wild-type mice. Subsequent analysis revealed that DC-SCRIPT was expressed in mouse mammary epithelium and that DC-SCRIPT deficiency delayed mammary gland morphogenesis in vivo. Finally, analysis of 3D mammary gland organoid cultures confirmed that loss of DC-SCRIPT dramatically delayed mammary organoid branching in vitro. The study shows for the first time that DC-SCRIPT deficiency delays mammary gland morphogenesis in vivo and in vitro. These data define DC-SCRIPT as a novel modulator of mammary gland development

    Microplastic in Surface Waters of Urban Rivers: Concentration, Sources, and Associated Bacterial Assemblages

    Get PDF
    The ecological dynamics of microplastic (\u3c5 mm) are well documented in marine ecosystems, but the sources, abundance, and ecological role of microplastic in rivers are unknown and likely to be substantial. Microplastic fibers (e.g., synthetic fabrics) and pellets (e.g., abrasives in personal care products) are abundant in wastewater treatment plant (WWTP) effluent, and can serve as a point source of microplastic in rivers. The buoyancy, hydrophobic surface, and long transport distance of microplastic make it a novel substrate for the selection and dispersal of unique microbial assemblages. We measured microplastic concentration and bacterial assemblage composition on microplastic and natural surfaces upstream and downstream of WWTP effluent sites at nine rivers in Illinois, United States. Microplastic concentration was higher downstream of WWTP effluent outfall sites in all but two rivers. Pellets, fibers, and fragments were the dominant microplastic types, and polymers were identified as polypropylene, polyethylene, and polystyrene. Mean microplastic flux was 1,338,757 pieces per day, although the flux was highly variable among nine sites (min = 15,520 per day, max = 4,721,709 per day). High-throughput sequencing of 16S rRNA genes showed bacterial assemblage composition was significantly different among microplastic, seston, and water column substrates. Microplastic bacterial assemblages had lower taxon richness, diversity, and evenness than those on other substrates, and microplastic selected for taxa that may degrade plastic polymers (e.g., Pseudomonas) and those representing common human intestinal pathogens (e.g., Arcobacter). Effluent from WWTPs in rivers is an important component of the global plastic “life cycle,” and microplastic serves as a novel substrate that selects and transports distinct bacterial assemblages in urban rivers. Rates of microplastic deposition, consumption by stream biota, and the metabolic capacity of microplastic biofilms in rivers are unknown and merit further research

    The helminth product, ES-62, protects against airway inflammation by resetting the Th cell phenotype

    Get PDF
    We previously demonstrated inhibition of ovalbumin (OVA)-induced allergic airway hyper-responsiveness in the mouse using ES-62, a phosphorylcholine-containing glycoprotein secreted by the filarial nematode, Acanthocheilonema viteae. This inhibition correlated with ES-62-induced mast cell desensitisation, although the degree to which this reflected direct targeting of mast cells remained unclear as suppression of the Th2 phenotype of the inflammatory response, as measured by eosinophilia and IL-4 levels in the lungs, was also observed. We now show that inhibition of the lung Th2 phenotype is reflected in ex vivo analyses of draining lymph node recall cultures and accompanied by a decrease in the serum levels of total and OVA-specific IgE. Moreover, ES-62 also suppresses the lung infiltration by neutrophils that is associated with severe asthma and is generally refractory to conventional anti-inflammatory therapies, including steroids. Protection against Th2-associated airway inflammation does not reflect induction of regulatory T cell (Treg) responses (there is no increased IL-10 or Foxp3 expression) but rather a switch in polarisation towards increased T-bet expression and IFNγ production. This ES-62-driven switch in the Th1/Th2 balance is accompanied by decreased IL-17 responses, a finding in line with reports that IFNγ and IL-17 are counter-regulatory. Consistent with ES-62 mediating its effects via IFNγ-mediated suppression of pathogenic Th2/Th17 responses, we found that neutralising anti-IFNγ antibodies blocked protection against airway inflammation in terms of pro-inflammatory cell infiltration, particularly by neutrophils and lung pathology. Collectively, these studies indicate that ES-62, or more likely small molecule analogues, could have therapeutic potential in asthma, in particular for those subtypes of patients (e.g. smokers, steroid-resistant) who are refractory to current treatments

    The Chromosomal High-Affinity Binding Sites for the Drosophila Dosage Compensation Complex

    Get PDF
    Dosage compensation in male Drosophila relies on the X chromosome–specific recruitment of a chromatin-modifying machinery, the dosage compensation complex (DCC). The principles that assure selective targeting of the DCC are unknown. According to a prevalent model, X chromosome targeting is initiated by recruitment of the DCC core components, MSL1 and MSL2, to a limited number of so-called “high-affinity sites” (HAS). Only very few such sites are known at the DNA sequence level, which has precluded the definition of DCC targeting principles. Combining RNA interference against DCC subunits, limited crosslinking, and chromatin immunoprecipitation coupled to probing high-resolution DNA microarrays, we identified a set of 131 HAS for MSL1 and MSL2 and confirmed their properties by various means. The HAS sites are distributed all over the X chromosome and are functionally important, since the extent of dosage compensation of a given gene and its proximity to a HAS are positively correlated. The sites are mainly located on non-coding parts of genes and predominantly map to regions that are devoid of nucleosomes. In contrast, the bulk of DCC binding is in coding regions and is marked by histone H3K36 methylation. Within the HAS, repetitive DNA sequences mainly based on GA and CA dinucleotides are enriched. Interestingly, DCC subcomplexes bind a small number of autosomal locations with similar features

    Dissolved noble gases and stable isotopes as tracers of preferential fluid flow along faults in the Lower Rhine Embayment, Germany

    Get PDF
    Groundwater in shallow unconsolidated sedimentary aquifers close to the Bornheim fault in the Lower Rhine Embayment (LRE), Germany, has relatively low δ2H and δ18O values in comparison to regional modern groundwater recharge, and 4He concentrations up to 1.7 × 10−4 cm3 (STP) g–1 ± 2.2 % which is approximately four orders of magnitude higher than expected due to solubility equilibrium with the atmosphere. Groundwater age dating based on estimated in situ production and terrigenic flux of helium provides a groundwater residence time of ∼107 years. Although fluid exchange between the deep basal aquifer system and the upper aquifer layers is generally impeded by confining clay layers and lignite, this study’s geochemical data suggest, for the first time, that deep circulating fluids penetrate shallow aquifers in the locality of fault zones, implying  that sub-vertical fluid flow occurs along faults in the LRE. However, large hydraulic-head gradients observed across many faults suggest that they act as barriers to lateral groundwater flow. Therefore, the geochemical data reported here also substantiate a conduit-barrier model of fault-zone hydrogeology in unconsolidated sedimentary deposits, as well as corroborating the concept that faults in unconsolidated aquifer systems can act as loci for hydraulic connectivity between deep and shallow aquifers. The implications of fluid flow along faults in sedimentary basins worldwide are far reaching and of particular concern for carbon capture and storage (CCS) programmes, impacts of deep shale gas recovery for shallow groundwater aquifers, and nuclear waste storage sites where fault zones could act as potential leakage pathways for hazardous fluids
    corecore