562 research outputs found

    Photoreflectance analysis of a GaInP/GaInAs/Ge multijunction solar cell

    Get PDF
    We have analyzed the photoreflectance spectra of a GaInP/GaInAs/Ge triple junction solar cell. The spectra reveal signatures from the window layer and middle and top subcells included in the stack. Additional contributions from the multilayer buffer introduced between the mismatched bottom and middle cells have been detected. Franz–Keldysh oscillations (FKOs) dominate the spectra above the fundamental bandgaps of the GaInP and GaInAs absorbers. From the FKO analysis, we have estimated the dominant electric fields within each subcell. In light of these results, photoreflectance is proposed as a useful diagnostic tool for quality assessment of multijunction structures prior to completion of the device or at earlier stages during its processing

    Ein neues, unkompliziertes Verfahren zur Bestimmung der Zusammensetzung binärer Flüssigkeitsgemische

    Get PDF
    Ein neues Verfahren zur Bestimmung der Zusammensetzung binärer Flüssigkeitsgemische mit Hilfe solvatochromer Farbstoffe wird beschrieben. Die Analyse erfolgt durch einfache UV/VIS-Absorptionsmessung und ist unter Verwendung einer Zwei-Parameter-Gleichung ein exakter Schnelltest

    Selective Phosphonylation of 5′-Adenosine Monophosphate (5′-AMP) via Pyrophosphite [PPi(III)]

    Get PDF
    We describe here experiments which demonstrate the selective phospho-transfer from a plausibly prebiotic condensed phosphorus (P) salt, pyrophosphite [H2P2O52−; PPi(III)], to the phosphate group of 5′-adenosine mono phosphate (5′-AMP). We show further that this P-transfer process is accelerated both by divalent metal ions (M2+) and by organic co-factors such as acetate (AcO−). In this specific case of P-transfer from PPi(III) to 5′-AMP, we show a synergistic enhancement of transfer in the combined presence of M2+ & AcO−. Isotopic labelling studies demonstrate that hydrolysis of the phosphonylated 5′-AMP, [P(III)P(V)-5′-AMP], proceeds via nuceophilic attack of water at the Pi(III) terminus

    Spectral splitting photovoltaics using perovskite and wideband dye-sensitized solar cells

    Get PDF
    The extension of the light absorption of photovoltaics into the near-infrared region is important to increase the energy conversion efficiency. Although the progress of the lead halide perovskite solar cells is remarkable, and high conversion efficiency of >20% has been reached, their absorption limit on the long-wavelength side is similar to 800 nm. To further enhance the conversion efficiency of perovskite-based photovoltaics, a hybridized system with near-infrared photovoltaics is a useful approach. Here we report a panchromatic sensitizer, coded DX3, that exhibits a broad response into the near-infrared, up to similar to 1100 nm, and a photocurrent density exceeding 30 mA cm(-2) in simulated air mass 1.5 standard solar radiation. Using the DX3-based dye-sensitized solar cell in conjunction with a perovskite cell that harvests visible light, the hybridized mesoscopic photovoltaics achieved a conversion efficiency of 21.5% using a system of spectral splitting.open0

    Structure-Function Relations in Oxaloacetate Decarboxylase Complex. Fluorescence and Infrared Approaches to Monitor Oxomalonate and Na+ Binding Effect

    Get PDF
    ions across the membrane, which drives endergonic membrane reactions such as ATP synthesis, transport and motility. OAD is a membrane-bound enzyme composed of α, β and γ subunits. The α subunit contains the carboxyltransferase catalytic site. characteristic of a high content of α helix structures. Addition of oxomalonate induced a shift of the amide-I band of OAD toward higher wavenumbers, interpreted as a slight decrease of β sheet structures and a concomitant increase of α helix structures. Oxomalonate binding to αγand α subunits also provoked secondary structure variations, but these effects were negligible compared to OAD complex. alters the tryptophan environment of the β subunit, consistent with the function of these subunits within the enzyme complex. Formation of a complex between OAD and its substrates elicits structural changes in the α-helical as well as β-strand secondary structure elements

    Transmembrane potential induced on the internal organelle by a time-varying magnetic field: a model study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>When a cell is exposed to a time-varying magnetic field, this leads to an induced voltage on the cytoplasmic membrane, as well as on the membranes of the internal organelles, such as mitochondria. These potential changes in the organelles could have a significant impact on their functionality. However, a quantitative analysis on the magnetically-induced membrane potential on the internal organelles has not been performed.</p> <p>Methods</p> <p>Using a two-shell model, we provided the first analytical solution for the transmembrane potential in the organelle membrane induced by a time-varying magnetic field. We then analyzed factors that impact on the polarization of the organelle, including the frequency of the magnetic field, the presence of the outer cytoplasmic membrane, and electrical and geometrical parameters of the cytoplasmic membrane and the organelle membrane.</p> <p>Results</p> <p>The amount of polarization in the organelle was less than its counterpart in the cytoplasmic membrane. This was largely due to the presence of the cell membrane, which "shielded" the internal organelle from excessive polarization by the field. Organelle polarization was largely dependent on the frequency of the magnetic field, and its polarization was not significant under the low frequency band used for transcranial magnetic stimulation (TMS). Both the properties of the cytoplasmic and the organelle membranes affect the polarization of the internal organelle in a frequency-dependent manner.</p> <p>Conclusions</p> <p>The work provided a theoretical framework and insights into factors affecting mitochondrial function under time-varying magnetic stimulation, and provided evidence that TMS does not affect normal mitochondrial functionality by altering its membrane potential.</p

    Ice-confined construction of a large basaltic volcano—Austurfjöll massif, Askja, Iceland

    Get PDF
    Austurfjöll is the largest basaltic glaciovolcanic massif at Askja volcano (Central Iceland), and through detailed studies of its volcanological and geochemical characteristics, we provide a detailed account of the sequence and structure of the ice-confined construction of a large Icelandic basaltic volcano. In particular, Austurfjöll represents a geometry of vents, and resulting glaciovolcanic morphology, not previously documented in ice-confined basaltic volcanoes. Austurfjöll was constructed during two major phases of basaltic volcanism, via seven eruptive episodes through disperse fissure-dominated eruptions. The earliest episode involved a rare and poorly exposed example of subaerial activity, and this was succeeded by six episodes involving the eruption of ice-confined pillow lavas and numerous overlapping fissure eruptions of phreatomagmatic tephra. Evidence of local subaerial lavas and tephras indicates the local growth of eruptive centers above englacial lake levels, and subsequent flooding, but no prolonged subaerial activity. Localized ice-contact facies, paleowater levels, and diamictons indicate the position and thickness of the ice was variable during the construction of Austurfjöll, and eruptive activity likely occurred in multiple and variable level meltwater lakes during the last glacial period. Lithofacies evidence including gradational transitions from effusive to explosive deposits, superposition of fragmental facies above coherent facies, and drainage channels suggest that changes in eruptive style were driven largely by external factors such as drainage and the increasing elevation of the massif. This study emphasizes the unique character of Austurfjöll, being composed of large pillow lava sheets, numerous (> 40) overlapping glaciovolcanic tindars, and only localized emergent deposits, as a product of its prolonged ice-confined eruptive history, contrasts with previous descriptions of tuyas and tindars

    A benzene-degrading nitrate-reducing microbial consortium displays aerobic and anaerobic benzene degradation pathways

    Get PDF
    All sequence data from this study were deposited at the European Bioinformatics Institute under the accession numbers ERS1670018 to ERS1670023. Further, all assigned genes, taxonomy, function, sequences of contigs, genes and proteins can be found in Table S3.In this study, we report transcription of genes involved in aerobic and anaerobic benzene degradation pathways in a benzene-degrading denitrifying continuous culture. Transcripts associated with the family Peptococcaceae dominated all samples (2136% relative abundance) indicating their key role in the community. We found a highly transcribed gene cluster encoding a presumed anaerobic benzene carboxylase (AbcA and AbcD) and a benzoate-coenzyme A ligase (BzlA). Predicted gene products showed >96% amino acid identity and similar gene order to the corresponding benzene degradation gene cluster described previously, providing further evidence for anaerobic benzene activation via carboxylation. For subsequent benzoyl-CoA dearomatization, bam-like genes analogous to the ones found in other strict anaerobes were transcribed, whereas gene transcripts involved in downstream benzoyl-CoA degradation were mostly analogous to the ones described in facultative anaerobes. The concurrent transcription of genes encoding enzymes involved in oxygenase-mediated aerobic benzene degradation suggested oxygen presence in the culture, possibly formed via a recently identified nitric oxide dismutase (Nod). Although we were unable to detect transcription of Nod-encoding genes, addition of nitrite and formate to the continuous culture showed indication for oxygen production. Such an oxygen production would enable aerobic microbes to thrive in oxygen-depleted and nitrate-containing subsurface environments contaminated with hydrocarbons.This study was supported by a grant of BE-Basic-FES funds from the Dutch Ministry of Economic Affairs. The research of A.J.M. Stams is supported by an ERC grant (project 323009) and the gravitation grant “Microbes for Health and Environment” (project 024.002.002) of the Netherlands Ministry of Education, Culture and Science. F. Hugenholtz was supported by the same gravitation grant (project 024.002.002). B. Hornung is supported by Wageningen University and the Wageningen Institute for Environment and Climate Research (WIMEK) through the IP/OP program Systems Biology (project KB-17-003.02-023).info:eu-repo/semantics/publishedVersio

    Genomic traits of Klebsiella oxytoca DSM 29614, an uncommon metal-nanoparticle producer strain isolated from acid mine drainages

    Get PDF
    Abstract Background: Klebsiella oxytoca DSM 29614 - isolated from acid mine drainages - grows anaerobically using Fe(III)- citrate as sole carbon and energy source, unlike other enterobacteria and K. oxytoca clinical isolates. The DSM 29614 strain is multi metal resistant and produces metal nanoparticles that are embedded in its very peculiar capsular exopolysaccharide. These metal nanoparticles were effective as antimicrobial and anticancer compounds, chemical catalysts and nano-fertilizers. Results: The DSM 29614 strain genome was sequenced and analysed by a combination of in silico procedures. Comparative genomics, performed between 85 K. oxytoca representatives and K. oxytoca DSM 29614, revealed that this bacterial group has an open pangenome, characterized by a very small core genome (1009 genes, about 2%), a high fraction of unique (43,808 genes, about 87%) and accessory genes (5559 genes, about 11%). Proteins belonging to COG categories “Carbohydrate transport and metabolism” (G), “Amino acid transport and metabolism” (E), “Coenzyme transport and metabolism” (H), “Inorganic ion transport and metabolism” (P), and “membrane biogenesis-related proteins” (M) are particularly abundant in the predicted proteome of DSM 29614 strain. The results of a protein functional enrichment analysis - based on a previous proteomic analysis – revealed metabolic optimization during Fe(III)- citrate anaerobic utilization. In this growth condition, the observed high levels of Fe(II) may be due to different flavin metal reductases and siderophores as inferred form genome analysis. The presence of genes responsible for the synthesis of exopolysaccharide and for the tolerance to heavy metals was highlighted too. The inferred genomic insights were confirmed by a set of phenotypic tests showing specific metabolic capability in terms of i) Fe2+ and exopolysaccharide production and ii) phosphatase activity involved in precipitation of metal ion-phosphate salts. Conclusion: The K. oxytoca DSM 29614 unique capabilities of using Fe(III)-citrate as sole carbon and energy source in anaerobiosis and tolerating diverse metals coincides with the presence at the genomic level of specific genes that can support i) energy metabolism optimization, ii) cell protection by the biosynthesis of a peculiar exopolysaccharide armour entrapping metal ions and iii) general and metal-specific detoxifying activities by different proteins and metabolites
    corecore