10 research outputs found

    Suicide risk in schizophrenia: learning from the past to change the future

    Get PDF
    Suicide is a major cause of death among patients with schizophrenia. Research indicates that at least 5–13% of schizophrenic patients die by suicide, and it is likely that the higher end of range is the most accurate estimate. There is almost total agreement that the schizophrenic patient who is more likely to commit suicide is young, male, white and never married, with good premorbid function, post-psychotic depression and a history of substance abuse and suicide attempts. Hopelessness, social isolation, hospitalization, deteriorating health after a high level of premorbid functioning, recent loss or rejection, limited external support, and family stress or instability are risk factors for suicide in patients with schizophrenia. Suicidal schizophrenics usually fear further mental deterioration, and they experience either excessive treatment dependence or loss of faith in treatment. Awareness of illness has been reported as a major issue among suicidal schizophrenic patients, yet some researchers argue that insight into the illness does not increase suicide risk. Protective factors play also an important role in assessing suicide risk and should also be carefully evaluated. The neurobiological perspective offers a new approach for understanding self-destructive behavior among patients with schizophrenia and may improve the accuracy of screening schizophrenics for suicide. Although, there is general consensus on the risk factors, accurate knowledge as well as early recognition of patients at risk is still lacking in everyday clinical practice. Better knowledge may help clinicians and caretakers to implement preventive measures. This review paper is the results of a joint effort between researchers in the field of suicide in schizophrenia. Each expert provided a brief essay on one specific aspect of the problem. This is the first attempt to present a consensus report as well as the development of a set of guidelines for reducing suicide risk among schizophenia patients

    Higher schizotypy predicts better metabolic profile in unaffected siblings of patients with schizophrenia

    No full text
    Rationale: Type 2 diabetes (T2D) is more frequent in schizophrenia (Sz) than in the general population. This association is partly accounted for by shared susceptibility genetic variants. Objective: We tested the hypotheses that a genetic predisposition to Sz would be associated with higher likelihood of insulin resistance (IR), and that IR would be predicted by subthreshold psychosis phenotypes. Methods: Unaffected siblings of Sz patients (n = 101) were compared with a nonclinical sample (n = 305) in terms of IR, schizotypy (SzTy), and a behavioural experiment of “jumping to conclusions”. The measures, respectively, were the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR), Structured Interview for Schizotypy-Revised (SIS-R), and the Beads Task (BT). The likelihood of IR was examined in multiple regression models that included sociodemographic, metabolic, and cognitive parameters alongside group status, SIS-R scores, and BT performance. Results: Insulin resistance was less frequent in siblings (31.7%) compared to controls (43.3%) (p < 0.05), and negatively associated with SzTy, as compared among the tertile groups for the latter (p < 0.001). The regression model that examined all relevant parameters included the tSzTy tertiles, TG and HDL-C levels, and BMI, as significant predictors of IR. Lack of IR was predicted by the highest as compared to the lowest SzTy tertile [OR (95%CI): 0.43 (0.21–0.85), p = 0.015]. Conclusion: Higher dopaminergic activity may contribute to both schizotypal features and a favourable metabolic profile in the same individual. This is compatible with dopamine’s regulatory role in glucose metabolism via indirect central actions and a direct action on pancreatic insulin secretion. The relationship between dopaminergic activity and metabolic profile in Sz must be examined in longitudinal studies with younger unaffected siblings

    Human CRY1 variants associate with attention deficit/hyperactivity disorder

    No full text
    Attention deficit/hyperactivity disorder (ADHD) is a common and heritable phenotype frequently accompanied by insomnia, anxiety, and depression. Here, using a reverse phenotyping approach, we report heterozygous coding variations in the core circadian clock gene cryptochrome 1 in 15 unrelated multigenerational families with combined ADHD and insomnia. The variants led to functional alterations in the circadian molecular rhythms, providing a mechanistic link to the behavioral symptoms. One variant, CRY1 Delta 11 c.1657+3A>C, is present in approximately 1% of Europeans, therefore standing out as a diagnostic and therapeutic marker. We showed by exome sequencing in an independent cohort of patients with combined ADHD and insomnia that 8 of 62 patients and 0 of 369 controls carried CRY1 Delta 11. Also, we identified a variant, CRY116 c.825+1G>A, that shows reduced affinity for BMAL1/CLOCK and causes an arrhythmic phenotype. Genotype-phenotype correlation analysis revealed that this variant segregated with ADHD and delayed sleep phase disorder (DSPD) in the affected family. Finally, we found in a phenome-wide association study involving 9438 unrelated adult Europeans that CRY1 Delta 11 was associated with major depressive disorder, insomnia, and anxiety. These results defined a distinctive group of circadian psychiatric phenotypes that we propose to designate as "circiatric" disorders

    Efficient Implementation of Application-Aware Spinlock Control in MPSoCs

    Get PDF
    Recent years have seen considerable progress in epidemiological and molecular genetic research into environmental and genetic factors in schizophrenia, but methodological uncertainties remain with regard to validating environmental exposures, and the population risk conferred by individual molecular genetic variants is small. There are now also a limited number of studies that have investigated molecular genetic candidate gene-environment interactions (G × E), however, so far, thorough replication of findings is rare and G × E research still faces several conceptual and methodological challenges. In this article, we aim to review these recent developments and illustrate how integrated, large-scale investigations may overcome contemporary challenges in G × E research, drawing on the example of a large, international, multi-center study into the identification and translational application of G × E in schizophrenia. While such investigations are now well underway, new challenges emerge for G × E research from late-breaking evidence that genetic variation and environmental exposures are, to a significant degree, shared across a range of psychiatric disorders, with potential overlap in phenotyp
    corecore