116 research outputs found

    Hardy-Carleman Type Inequalities for Dirac Operators

    Full text link
    General Hardy-Carleman type inequalities for Dirac operators are proved. New inequalities are derived involving particular traditionally used weight functions. In particular, a version of the Agmon inequality and Treve type inequalities are established. The case of a Dirac particle in a (potential) magnetic field is also considered. The methods used are direct and based on quadratic form techniques

    On a Watson-like Uniqueness Theorem and Gevrey Expansions

    Get PDF
    We present a maximal class of analytic functions, elements of which are in one-to-one correspondence with their asymptotic expansions. In recent decades it has been realized (B. Malgrange, J. Ecalle, J.-P. Ramis, Y. Sibuya et al.), that the formal power series solutions of a wide range of systems of ordinary (even non-linear) analytic differential equations are in fact the Gevrey expansions for the regular solutions. Watson's uniqueness theorem belongs to the foundations of this new theory. This paper contains a discussion of an extension of Watson's uniqueness theorem for classes of functions which admit a Gevrey expansion in angular regions of the complex plane with opening less than or equal to (\frac \pi k,) where (k) is the order of the Gevrey expansion. We present conditions which ensure uniqueness and which suggest an extension of Watson's representation theorem. These results may be applied for solutions of certain classes of differential equations to obtain the best accuracy estimate for the deviation of a solution from a finite sum of the corresponding Gevrey expansion.Comment: 18 pages, 4 figure

    Zeta function regularization in Casimir effect calculations and J.S. Dowker's contribution

    Full text link
    A summary of relevant contributions, ordered in time, to the subject of operator zeta functions and their application to physical issues is provided. The description ends with the seminal contributions of Stephen Hawking and Stuart Dowker and collaborators, considered by many authors as the actual starting point of the introduction of zeta function regularization methods in theoretical physics, in particular, for quantum vacuum fluctuation and Casimir effect calculations. After recalling a number of the strengths of this powerful and elegant method, some of its limitations are discussed. Finally, recent results of the so called operator regularization procedure are presented.Comment: 16 pages, dedicated to J.S. Dowker, version to appear in International Journal of Modern Physics

    The stability for the Cauchy problem for elliptic equations

    Full text link
    We discuss the ill-posed Cauchy problem for elliptic equations, which is pervasive in inverse boundary value problems modeled by elliptic equations. We provide essentially optimal stability results, in wide generality and under substantially minimal assumptions. As a general scheme in our arguments, we show that all such stability results can be derived by the use of a single building brick, the three-spheres inequality.Comment: 57 pages, review articl

    The Boundary Convergence of the Steady Zero-Temperature-Driven Hard Spheres

    Full text link
    We study the fundamental problem of two gas species in two dimensional velocity space whose molecules collide as hard circles in the presence of a flat boundary and with dependence on only one space dimension. The case of three-dimensional velocity space is a generalization. More speciffically the linear problem arising when the second gas dominates as a flow with constant velocity (and hence zero temperature) is considered. The boundary condition adopted consists of prescribing the outgoing velocity distribution at the wall. It is discovered that the presence of the boundary under general assumptions on the outgoing distribution ensures the convergence of a series of path integrals and thus a convenient representation for the solution is obtained.Comment: 13 pages, 2 figure

    Scaling Theory of Conduction Through a Normal-Superconductor Microbridge

    Get PDF
    The length dependence is computed of the resistance of a disordered normal-metal wire attached to a superconductor. The scaling of the transmission eigenvalue distribution with length is obtained exactly in the metallic limit, by a transformation onto the isobaric flow of a two-dimensional ideal fluid. The resistance has a minimum for lengths near l/Gamma, with l the mean free path and Gamma the transmittance of the superconductor interface.Comment: 8 pages, REVTeX-3.0, 3 postscript figures appended as self-extracting archive, INLO-PUB-94031

    Self-dual noncommutative \phi^4-theory in four dimensions is a non-perturbatively solvable and non-trivial quantum field theory

    Full text link
    We study quartic matrix models with partition function Z[E,J]=\int dM \exp(trace(JM-EM^2-(\lambda/4)M^4)). The integral is over the space of Hermitean NxN-matrices, the external matrix E encodes the dynamics, \lambda>0 is a scalar coupling constant and the matrix J is used to generate correlation functions. For E not a multiple of the identity matrix, we prove a universal algebraic recursion formula which gives all higher correlation functions in terms of the 2-point function and the distinct eigenvalues of E. The 2-point function itself satisfies a closed non-linear equation which must be solved case by case for given E. These results imply that if the 2-point function of a quartic matrix model is renormalisable by mass and wavefunction renormalisation, then the entire model is renormalisable and has vanishing \beta-function. As main application we prove that Euclidean \phi^4-quantum field theory on four-dimensional Moyal space with harmonic propagation, taken at its self-duality point and in the infinite volume limit, is exactly solvable and non-trivial. This model is a quartic matrix model, where E has for N->\infty the same spectrum as the Laplace operator in 4 dimensions. Using the theory of singular integral equations of Carleman type we compute (for N->\infty and after renormalisation of E,\lambda) the free energy density (1/volume)\log(Z[E,J]/Z[E,0]) exactly in terms of the solution of a non-linear integral equation. Existence of a solution is proved via the Schauder fixed point theorem. The derivation of the non-linear integral equation relies on an assumption which we verified numerically for coupling constants 0<\lambda\leq (1/\pi).Comment: LaTeX, 64 pages, xypic figures. v4: We prove that recursion formulae and vanishing of \beta-function hold for general quartic matrix models. v3: We add the existence proof for a solution of the non-linear integral equation. A rescaling of matrix indices was necessary. v2: We provide Schwinger-Dyson equations for all correlation functions and prove an algebraic recursion formula for their solutio

    Celebrating Cercignani's conjecture for the Boltzmann equation

    Full text link
    Cercignani's conjecture assumes a linear inequality between the entropy and entropy production functionals for Boltzmann's nonlinear integral operator in rarefied gas dynamics. Related to the field of logarithmic Sobolev inequalities and spectral gap inequalities, this issue has been at the core of the renewal of the mathematical theory of convergence to thermodynamical equilibrium for rarefied gases over the past decade. In this review paper, we survey the various positive and negative results which were obtained since the conjecture was proposed in the 1980s.Comment: This paper is dedicated to the memory of the late Carlo Cercignani, powerful mind and great scientist, one of the founders of the modern theory of the Boltzmann equation. 24 pages. V2: correction of some typos and one ref. adde

    Asymptotic Improvement of Resummation and Perturbative Predictions in Quantum Field Theory

    Full text link
    The improvement of resummation algorithms for divergent perturbative expansions in quantum field theory by asymptotic information about perturbative coefficients is investigated. Various asymptotically optimized resummation prescriptions are considered. The improvement of perturbative predictions beyond the reexpansion of rational approximants is discussed.Comment: 21 pages, LaTeX, 3 tables; title shortened; typographical errors corrected; minor changes of style; 2 references adde
    • …
    corecore