We present a maximal class of analytic functions, elements of which are in
one-to-one correspondence with their asymptotic expansions. In recent decades
it has been realized (B. Malgrange, J. Ecalle, J.-P. Ramis, Y. Sibuya et al.),
that the formal power series solutions of a wide range of systems of ordinary
(even non-linear) analytic differential equations are in fact the Gevrey
expansions for the regular solutions. Watson's uniqueness theorem belongs to
the foundations of this new theory. This paper contains a discussion of an
extension of Watson's uniqueness theorem for classes of functions which admit a
Gevrey expansion in angular regions of the complex plane with opening less than
or equal to (\frac \pi k,) where (k) is the order of the Gevrey expansion. We
present conditions which ensure uniqueness and which suggest an extension of
Watson's representation theorem. These results may be applied for solutions of
certain classes of differential equations to obtain the best accuracy estimate
for the deviation of a solution from a finite sum of the corresponding Gevrey
expansion.Comment: 18 pages, 4 figure