2,990 research outputs found

    Estimates of multipolar coefficients to search for cosmic ray anisotropies with non-uniform or partial sky coverage

    Full text link
    We study the possibility to extract the multipolar moments of an underlying distribution from a set of cosmic rays observed with non-uniform or even partial sky coverage. We show that if the degree is assumed to be upper bounded by LL, each multipolar moment can be recovered whatever the coverage, but with a variance increasing exponentially with the bound LL if the coverage is zero somewhere. Despite this limitation, we show the possibility to test predictions of a model without any assumption on LL by building an estimate of the covariance matrix seen through the exposure function.Comment: 20 pages, 8 figure

    New methods of evaluation of the flavour composition in annihilation by double hemisphere tagging at LEP/SLC energies

    Get PDF
    Two new methods are proposed to extract the flavour contents of the events produced at LEP/SLC, together with the classification matrix of a tagging by hemispheres. By utilising the tagging obtained in both hemispheres, the efficiencies, backgrounds and flavour compositions are directly obtained by fitting the data. A minimal dependence on modelling and a consistent treatment of systematic errors are achieved by applying these methods. The choice of the tagging algorithm is irrelevant in the methods, provided that similar efficiencies are reached. As an example, a multivariate analysis technique combining the tracking information given by a microvertex detector has been applied to extract the Z → b overlineb branching ratio using a standard simulation of a LEP/SLC experiment

    Characterisation of the electromagnetic component in ultra-high energy inclined air showers

    Full text link
    Inclined air showers - those arriving at ground with zenith angle with respect to the vertical theta > 60 deg - are characterised by the dominance of the muonic component at ground which is accompanied by an electromagnetic halo produced mainly by muon decay and muon interactions. By means of Monte Carlo simulations we give a full characterisation of the particle densities at ground in ultra-high energy inclined showers as a function of primary energy and mass composition, as well as for different hadronic models assumed in the simulations. We also investigate the effect of intrinsic shower-to-shower fluctuations in the particle densities.Comment: 31 pages, 18 figures, accepted for publication in Astroparticle Physic

    Tracking Performance of the Scintillating Fiber Detector in the K2K Experiment

    Full text link
    The K2K long-baseline neutrino oscillation experiment uses a Scintillating Fiber Detector (SciFi) to reconstruct charged particles produced in neutrino interactions in the near detector. We describe the track reconstruction algorithm and the performance of the SciFi after three years of operation.Comment: 24pages,18 figures, and 1 table. Preprint submitted to NI

    Sublethal toxicant effects with dynamic energy budget theory: model formulation

    Get PDF
    We develop and test a general modeling framework to describe the sublethal effects of pollutants by adding toxicity modules to an established dynamic energy budget (DEB) model. The DEB model describes the rates of energy acquisition and expenditure by individual organisms; the toxicity modules describe how toxicants affect these rates by changing the value of one or more DEB parameters, notably the parameters quantifying the rates of feeding and maintenance. We investigate four toxicity modules that assume: (1) effects on feeding only; (2) effects on maintenance only; (3) effects on feeding and maintenance with similar values for the toxicity parameters; and (4) effects on feeding and maintenance with different values for the toxicity parameters. We test the toxicity modules by fitting each to published data on feeding, respiration, growth and reproduction. Among the pollutants tested are metals (mercury and copper) and various organic compounds (chlorophenols, toluene, polycyclic aromatic hydrocarbons, tetradifon and pyridine); organisms include mussels, oysters, earthworms, water fleas and zebrafish. In most cases, the data sets could be adequately described with any of the toxicity modules, and no single module gave superior fits to all data sets. We therefore propose that for many applications, it is reasonable to use the most general and parameter sparse module, i.e. module 3 that assumes similar effects on feeding and maintenance, as a default. For one example (water fleas), we use parameter estimates to calculate the impact of food availability and toxicant levels on the long term population growth rate

    The Drift Chambers Of The Nomad Experiment

    Get PDF
    We present a detailed description of the drift chambers used as an active target and a tracking device in the NOMAD experiment at CERN. The main characteristics of these chambers are a large area, a self supporting structure made of light composite materials and a low cost. A spatial resolution of 150 microns has been achieved with a single hit efficiency of 97%.Comment: 42 pages, 26 figure

    Printed in Great Britain Genome sequence analysis of Tamana bat virus and its relationship with the genus Flavivirus

    Get PDF
    Tamana bat virus (TABV, isolated from the bat Pteronotus parnellii) is currently classified as a tentative species in the genus Flavivirus. We report here the determination and analysis of its complete coding sequence. Low but significant similarity scores between TABV and memberviruses of the genus Flavivirus were identified in the amino acid sequences of the structural, NS3 and NS5 genes. A series of cysteines located in the envelope protein and the most important enzymatic domains of the virus helicase/NTPase, methyltransferase and RNA-dependent RNA polymerase were found to be highly conserved. In the serine-protease domain, the catalytic sites were conserved, but variations in sequence were found in the putative substrate-binding sites, implying possible differences in the protease specificity. In accordance with this finding, the putative cleavage sites of the TABV polyprotein by the virus protease are substantially different from those of flaviviruses. The phylogenetic position of TABV could not be determined precisely, probably due to the extremely significant genetic divergence from other member-viruses of the family Flaviviridae. However, analysis based on both genetic distances and maximum-likelihood confirmed that TABV is more closely related to the flaviviruses than to the other genera. These findings have implications for the evolutionary history and taxonomic classification of the family as a whole : (i) the possibility that flaviviruses were derived from viruses infecting mammals rather than from mosquito viruses cannot be excluded ; (ii) using the current criteria for the definition of genera in the family Flaviviridae, TABV should be assigned to a new genus

    Neutrino Detection with Inclined Air Showers

    Full text link
    The possibilities of detecting high energy neutrinos through inclined showers produced in the atmosphere are addressed with an emphasis on the detection of air showers by arrays of particle detectors. Rates of inclined showers produced by both down-going neutrino interactions and by up-coming τ\tau decays from earth-skimming neutrinos as a function of shower energy are calculated with analytical methods using two sample neutrino fluxes with different spectral indices. The relative contributions from different flavors and charged, neutral current and resonant interactions are compared for down-going neutrinos interacting in the atmosphere. No detailed description of detectors is attempted but rough energy thresholds are implemented to establish the ranges of energies which are more suitable for neutrino detection through inclined showers. Down-going and up-coming rates are compared.Comment: Submitted to New Journal of Physic

    The Particle Physics Reach of High-Energy Neutrino Astronomy

    Full text link
    We discuss the prospects for high-energy neutrino astronomy to study particle physics in the energy regime comparable to and beyond that obtainable at the current and planned colliders. We describe the various signatures of high-energy cosmic neutrinos expected in both neutrino telescopes and air shower experiments and discuss these measurements within the context of theoretical models with a quantum gravity or string scale near a TeV, supersymmetry and scenarios with interactions induced by electroweak instantons. We attempt to access the particle physics reach of these experiments.Comment: Mini-review article for New Journal of Physics, "Focus on Neutrinos" issue. 27 pages, 11 figure
    corecore