76 research outputs found

    Livestock Methane Emission: Microbial Ecology and Mitigation Strategies

    Get PDF
    Rumen microbiome plays a critical role in the development and nutrition of the host, and any alteration in the rumen microbiome has an important effect on the animal. Rumen microbial ecology is always dynamic in response to the diets and physiological conditions of the host. Ruminal microorganisms are mainly anaerobic and provide around 75% of the energy needed by the animal. The importance of microbial diversity in rumen has gained attention not only due to its significance on the productivity of the host, but also due to the emission of greenhouse gases (GHGs) and their environmental impact. Livestock is one of the most important sources of GHGs from agriculture, contributing more than 25% of global GHGs emissions. However, the variations in livestock emission in different regions of the world could be attributed to the changes in diversity and abundance of rumen microbial communities, which vary according to the type and age of animal, type of feeds, feeding strategies, climate, etc. This chapter deals on rumen microbial ecology, the role of microorganisms in enteric fermentation and the different mitigation strategies based on manipulation of rumen microbial diversity to reduce the methane emissions from livestock

    Diffraction properties of one-dimensional finite size fibonacci quasilattice

    Get PDF
    The diffraction patterns from Fibonacci quasilattices have been calculated. Finite-size effects are evaluated for weak and strong peaks. For a smaller number of scatterers (<100) there are fluctuations in the intensities of weak and strong peaks. The fluctuations in weak peaks are greater than that in strong peaks. The fluctuations in intensities of weak and strong peaks near the origin are larger than in the corresponding cases of weak and strong peaks far away from the origin. Small shifts in peak-positions are unexpectedly found, the shifts being proportional to N-3/2 for a large number of scatterers. The diffraction pattern of a one-dimensional crystal and random structure is compared with that of the Fibonacci quasilattice. The strong peaks observed in the diffraction pattern of 1-d crystal show negligible peak-shifts, they being comparable with computational errors even when the number of scatterers is as small as 5. The implications for analysing the experiments are briefly indicated

    Soap Froths and Crystal Structures

    Full text link
    We propose a physical mechanism to explain the crystal symmetries found in macromolecular and supramolecular micellar materials. We argue that the packing entropy of the hard micellar cores is frustrated by the entropic interaction of their brush-like coronas. The latter interaction is treated as a surface effect between neighboring Voronoi cells. The observed crystal structures correspond to the Kelvin and Weaire-Phelan minimal foams. We show that these structures are stable for reasonable areal entropy densities.Comment: 4 pages, RevTeX, 2 included eps figure

    Interfaces in Diblocks: A Study of Miktoarm Star Copolymers

    Full text link
    We study ABn_n miktoarm star block copolymers in the strong segregation limit, focussing on the role that the AB interface plays in determining the phase behavior. We develop an extension of the kinked-path approach which allows us to explore the energetic dependence on interfacial shape. We consider a one-parameter family of interfaces to study the columnar to lamellar transition in asymmetric stars. We compare with recent experimental results. We discuss the stability of the A15 lattice of sphere-like micelles in the context of interfacial energy minimization. We corroborate our theory by implementing a numerically exact self-consistent field theory to probe the phase diagram and the shape of the AB interface.Comment: 12 pages, 11 included figure

    Crowdsourced estimation of cognitive decline and resilience in Alzheimer's disease

    Get PDF
    Identifying accurate biomarkers of cognitive decline is essential for advancing early diagnosis and prevention therapies in Alzheimer's disease. The Alzheimer's disease DREAM Challenge was designed as a computational crowdsourced project to benchmark the current state-of-the-art in predicting cognitive outcomes in Alzheimer's disease based on high dimensional, publicly available genetic and structural imaging data. This meta-analysis failed to identify a meaningful predictor developed from either data modality, suggesting that alternate approaches should be considered for prediction of cognitive performance

    Crowdsourced assessment of common genetic contribution to predicting anti-TNF treatment response in rheumatoid arthritis

    Get PDF
    Rheumatoid arthritis (RA) affects millions world-wide. While anti-TNF treatment is widely used to reduce disease progression, treatment fails in Bone-third of patients. No biomarker currently exists that identifies non-responders before treatment. A rigorous community-based assessment of the utility of SNP data for predicting anti-TNF treatment efficacy in RA patients was performed in the context of a DREAM Challenge (http://www.synapse.org/RA_Challenge). An open challenge framework enabled the comparative evaluation of predictions developed by 73 research groups using the most comprehensive available data and covering a wide range of state-of-the-art modelling methodologies. Despite a significant genetic heritability estimate of treatment non-response trait (h(2) = 0.18, P value = 0.02), no significant genetic contribution to prediction accuracy is observed. Results formally confirm the expectations of the rheumatology community that SNP information does not significantly improve predictive performance relative to standard clinical traits, thereby justifying a refocusing of future efforts on collection of other data

    Crowdsourced assessment of common genetic contribution to predicting anti-TNF treatment response in rheumatoid arthritis

    Get PDF
    Correction: vol 7, 13205, 2016, doi:10.1038/ncomms13205Rheumatoid arthritis (RA) affects millions world-wide. While anti-TNF treatment is widely used to reduce disease progression, treatment fails in Bone-third of patients. No biomarker currently exists that identifies non-responders before treatment. A rigorous community-based assessment of the utility of SNP data for predicting anti-TNF treatment efficacy in RA patients was performed in the context of a DREAM Challenge (http://www.synapse.org/RA_Challenge). An open challenge framework enabled the comparative evaluation of predictions developed by 73 research groups using the most comprehensive available data and covering a wide range of state-of-the-art modelling methodologies. Despite a significant genetic heritability estimate of treatment non-response trait (h(2) = 0.18, P value = 0.02), no significant genetic contribution to prediction accuracy is observed. Results formally confirm the expectations of the rheumatology community that SNP information does not significantly improve predictive performance relative to standard clinical traits, thereby justifying a refocusing of future efforts on collection of other data.Peer reviewe

    Availability and failure frequency of repairable m-order systems

    No full text
    Availability and other related parameters, such as failure frequency, mean down Lima, otc, aro important reliability parameters to be considered at the design stage of a system; and this needs appropriate mathematical models for their assessment. This paper presents algorithms to assess quantitatively the above parameters of a repairable m-ordor system comprising units with unequal failuro and repair rates. The concepts of minimal cut sets and minimal tie sets have been employed. The modols developed here can be applied to series and parallol systems as well
    • 

    corecore