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Abstract. The diffraction patterns from Fibonacci quasilattices have been calculated.
Finite-size effects are evaluated for weak and strong peaks. For a smaller number of scatterers
(<100) there are fluctuations in the intensities of weak and strong peaks. The fluctuations
in weak peaks are greater than that in strong peaks. The fluctuations in intensities of weak
and strong peaks near the origin are larger than in the corresponding cases of weak and
strong peaks far away from the origin. Small shifts in peak-positions are unexpectedly found,
the shifts being proportional to N =2 for a large number of scatterers. The diffraction pattern
of a one-dimensional crystal and random structure is compared with that of the Fibonz_mcci
quasilattice. The strong peaks observed in the diffraction pattern of 1-d crystal show negligible
peak-shifts, they being comparable with computational errors even when the number of
scatterers is as small as 5. The implications for analysing the experiments are briefly indicated.
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1. Introduction

Soon after the discovery of rapidly quenched Al-Mn alloys showing the crystallo- -
graphically forbidden 5-fold symmetry in the electron diffraction patterns (Shechtman
et al 1984), quasiperiodic structures were proposed (Levine and Steinhardt 1984) as
possible models for the atomic structure of these phases. The numerically computed
diffraction patterns of these models show the features of the experimentaily observed

" diffraction patterns. Quasilattices in one-, two- and three-dimensions can be obtained

by projecting higher dimensional periodic lattices onto a lower dimensional space
(Kramer and Neri 1984; Duneau and Katz 1985; Zia and Dallas 1985; Elser 1985,
1986; Gratias and Cahn 1986; Janssen 1986; Levine and Steinhardt 1986; Valsakumar
and Vijaykumar 1986; Prince 1987). The method of generating quasilattices using a
self-similarity principle is also known (Penrose 1974; Sasisekharan 1986). Quasilattxg?s
can also be obtained by the generalized dual method or multigrid method (de Bruijn
1981; Socolar et al 1985). o
Long before the experimental observation of quasicrystals, tiling a plane aperiodical-
ly with two kinds of rhombuses preserving the 5-fold rotational symmetry had been
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suggested (Penrose 1974). Starting with a pattern, having 5-fold rotational symmetry, -

consisting of these two kinds of rhombi an aperiodic tiling can be generated by
following a rule while matching the rhombuses. The number of rhombi of each kind
generated after n substitutions follows the Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, 21,
34,55, 89, 144, . .. The ratio of the number of one kind of rhombi to the other converges
to the golden mean, as the number of substitutions applied to generate the tiling
tends to infinity.

Fibonacci superlattices have been grown experimentally using GaAs/AlAs layers
(Todd etal 1986) and Nb/Cu layers (Hu et al 1986) and their diffraction properties
have been studied. The present work is concerned with these situations.

2. Model calculations

The one-dimensional (1-d) Fibonacci quasilattice can be generated using two
length-scales by the following substitution rule: L goes to LS, S goes to L. Thus we
get the following sequence of L’s and S’s: S; L; LS; LSL; LSLLS; LSLLSLSL;
LSLLSLSLLSLLS... The total number of L’s and S’s generated by the above
substitution rule follows the Fibonacci sequence. The ratio of the number of L’s to

the number of S’s converges to the golden mean t=(1+ ﬁ)/Z. The numbers forming
the Fibonacci sequence can be generated from the recursion rule: F,= F,_+F, ,,
n>2 (with F, =1, F,=1) where F, refers to the nth term of the sequence. The ratio
F,/F,_, oscillates about the value of T and converges to T as n tends to infinity. The
1-d Fibonacci quasilattice is obtained by placing é-function scatterers at the positions
given by the formula: '

X, = A +n+(1/1)[B+nx(1/1)]

where x, is the position of the nth scatterer, A=0-0 and B=1-0, [....] denotes the
integer part. A segment of the 1-d quasilattice is shown in figure 1.

The diffraction pattern was numerically calculated by numerical Fourier trans-
formation: F(k)=Y,exp (ikx,). The diffraction pattern obtained from 610 scatterers
by scanning the x*(x* = k/2r) axis is shown in figure 2. The peaks with intensity less
than 1% are not shown in the figure. The peaks could be indexed using the
infinite-quasilattice formula: k,,=Q2n/d)*(p+q/7), (x3,=kpe/27) Where p and g are
integers and d is defined to be the average spacing between the scatterers. For the
infinite Fibonacci quasilattice, d =d;4.a;=1+(1/7%). For the finite Fibonacci quasi-
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Figure 1. A segment of the one-dimensional Fibonacci quasilattice with unit é-function
scatterers.
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Figure 2. Diffraction from the Fibonacci quasilattice with 610 scatterers. Peaks with
intensity less than 1% of the central peak (x*=0) are not shown.

lattice d=dg; ;0 =(N T+ Ng)/(N.+Ns), where Ny =number of long intervals and
Ng=number of short intervals. Some of the peaks indexed by the above formula can
be seen in figure 2. When p and q are consecutive Fibonacci integers, it is found that
they index the strong peaks. The weak peaks are found to be indexable when p and
q are non-Fibonacci integers.

3. Results and discussion

Tn order to evaluate the finite size effects of the quasilattice on its diffracting property
the ratio of intensity of peak to the square of number of scatterers (I/N?) was calculated
for a number of peaks (peaks near the origin and far away from the origin). It was
calculated for different number of scatterers N. For a strong peak near the origin
(p=3, g=2) the intensity has been followed as a function of the number of scatterers
(figure 3). The fluctuations tend to settle down when the number of scatterers is greater
than S0. Figure 4 shows the plot of I vs N? for the strong peak (p=610, q=377) far
away from the origin. It can be seen that the fluctuations are within the computational
error even for a small number of scatterers (N < 50). .
Figure 5 shows the plot of I vs N2 for a weak peak (p=2, g=2) near tl.le origin.
The fluctuations tend to settle down only when the number of scatterers is greater
than 800. Figure 6 shows the plot of I vs N2 for a weak peak @=621., 'q=:386) far
away from the origin. In this case also the intensity of the peak stabilizes around
N ~700. In all cases, I/N? approaches constant values asymptotically. .
Another interesting aspect of the diffraction from the quasilattice 18 tp; shifts in
peak positions as a function of the number of scatterers. The peak-positions were
found out by scanning the x*-axis starting from the position of the pealf to be expected
for the diffraction from an infinite quasilattice and locating the position of the peak
nearest to the peak-position for the infinite quasilattice. The pcaks‘ were fou_nd
unexpectedly to shift and oscillate and finally converge to a mean value with increasing
number of scatterers. For example, figure 7 shows the peak-shifts as a functlon. of
number of scatterers for a strong peak near the origin (p=3, ¢=2). The peak-shifts




528 V S K Balagurusamy et al

9.68
&Qog,o.ooo_ootxo.o.o.o.o-boo-o.o—o-o—o-ooéo—oo—o-o—oo

9.60—

(Infensity/Na)mO

] 1 | . |
100 300 500 700
No. of sccHereEs (N}

Figure 3. Plot of I/N? for the strong peak (x¥-3 .=~ 3:065) nearer the origin. When the
number of scatterers is around 50 the fluctuations settle down. Strong peak p=3, =2,
Circles and triangles represent non-Fibonacci and Fibonacci integers respectively.
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Figure 4. I/N? is plotted for the strong peak (x¥-¢10,4=377 = 610) far away from the origin.

Even when the number of scatterers is around 10 the fluctuations are within the computational

error. Strong peak (p=610, g=377); Circles and triangles denote non-Fibonacci and
Fibonacci integers respectively.

are within computational error when N > 50. Figure 8 is the plot of peak-shifts vs N
for a strong peak (p=610, ¢=377) far away from the origin. The peak-shifts are
negligible even for a very small number of scatterers. Figure 9 shows the peak-shifts
for a weak peak (p=2, g=2) near the origin. The changes in the peak position are
larger and become negligible when N> 100. Figure 10 shows the plot of peak-shifts
vs N for the weak peak (p=621, ¢=386) far away from the origin. It is interesting
to see that the peak-shifts are much larger and also persist till N ~300. For the
weak-peaks discussed above (figures 9 and 10), the asymptotic behaviour of peak-shifts
(figures 11a and 11b) seem to be almost proportional to N -3z

The formula for indexing the peaks involves the d-spacing values and the d-spacing
values change due to changes in Ny and Ng. The N, and N values depend on the
choice of the finite segment of the quasilattice. Hence the d-spacing values for various
segments of the quasi-lattice containing the same number of scatterers have been
calculated. In order to see if there is any correlation between the d-spacing values
and the peak-position shifts, the diffraction from various segments containing the

same number of scatterers has been calculated. Figure 12 shows the d-spacing changes ‘

I
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Figure 5. For the weak peak (x¥-, ,-,~2:341) nearer the origin, the fluctuations in I/N 27
are shown. The fluctuations tend to settle down when the number of scatterers is around
700. Weak peak (p=2, g=2).
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Figure 6. Plot of I/N? for the weak peak (x;=61,‘,=386z621-984) far away from the origin.
The fluctuations persist till N ~700. Weak peak (p= 621, g=386).

scatterers along with the selected peak position sbﬁts.
Both the strong and weak peaks follow the same trend regarding the peak position
shifts. It seems that there is a partial correlation of peak-shifts with the d-spacing
changes. However even when the d-spacings are not changing, the peaks are fgund
to shift in a few places. This implies the existence of contributions to the peak positions
which are decided by the sequence of long and short intervals. The boundary effects

for various segments with 20
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Figure 7. Shifts in peak-positions of the strong peak (x}-3,4=2" 3-065) nearer the origin.
The peak-shifts are within the computational error when N ~ 100. Strong peak (p=3, g=2).
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Figure 8. Shifts in peak-positions for the strong peak (X*-10.4=377~610) far away from

the origin. Even when N~ 10 the shifts are within the computational error. Strong peak
(p=610, g=377).

clearly persist as the residual effect, besides the contribution from the d-spacings.

It is observed that the fluctuations in I/N? is larger for a weak peak than for a
strong peak when both the peaks are cither nearer the origin or far away from the
origin. This is due to the fact that a strong peak corresponds to the constructive
interference of the waves diffracted from a large number of scatterers. In the case of
a weak peak, there is a partial cancellation of the many contributions. The fractional
fluctuations are greater in this case of weak spots. When the size of the quasilattice
changes, it may not affect the intensity of a strong peak as much as it does a weak peak.

It is found that for a weak peak or strong peak nearer the origin, the changes in
peak intensities are larger than for a weak or strong peak far away from the origin,
respectively. This can be understood in terms of the property of Fourier transforms.
The changes in the values of the function at points far away from the origin in real
space will be reflected more in the values of the transform of the function at points
near the origin of the transformed space. This gives rise to the observed larger




1-d quasilattices and their diffraction 531

3.0

4

”‘q}ﬁ

) x 10°
hY
(@)
1

* ”»
a XN
(o)

Peak-shift (X

o]

Q

100 300 500 700
No. of scatterers (N)
Figure 9. For the weak peak (x}-, ,~, & 2-341) nearer the origin, the shifts in peak-positions
7 are shown. The peak-shifts are within the computational error when N ~300,, Weak peak
(p=2, g=2).
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Figure 10. Peak-shifts in the weak peak (X3=g21.9=386 ¥ 621-984) far away from the origin
are shown. The peak-shifts tend to settle down when N ~400. Weak peak (p=621, g=386).
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Figure 11a. Peak-shifts against number of scatterers is plotted in a log-log scale for the
weak-peak (p=2, g=2). The asymptotic behaviour of the peak-shifts is shown by a dotted
line. The peak-shift behaves almost like N =312 for a large number of scatterers.
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Figure 11b. vLog-log plot of peak-shifts against number of scatterers for the weak peak far
away from the origin (p=621, ¢=386). This also shows the similar asymptotic behaviour
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Figure 12. . Peak-shifts corresponding to various segments of the quasilattice containing the
same number of scatterers are shown. The dotted lines connect the d-spacings corresponding
to various segments. The continuous lines connect the peak-shifts for various peaks.

peak-intensity variations nearer the origin when the size of the quasilattice and hence
the boundary effects are changed.

The peak-positions of the diffraction from an infinite quasilattice have been worked
out (Levine and Steinhardt 1986; Zia and Dallas 1986). But the peak-positions of the
diffraction from a finite-size quasilattice will be different from that for the inﬁn%tc
quasilattice. The analytical methods of calculating the Fourier transforms of finite
segments of Fibonacci quasilattices use the periodic boundary conditions of an infinite
repetition of the finite segment. In the present case segments with a finite numbe; of
scatterers are discussed. This necessitates the use of numerical Fourier transformation
to calculate the diffraction pattern. For the scattering from a truly finite number of
points, the mean d-spacing and the boundary effects are noticeable.

In order to see whether similar effects are observable in the diffraction patterns of

finite-size 1-d crystal, we calculated the Fourier transform of a 1-d crystal with

interatomic spacings 1,7, 1, T, L, T (figure 13). We observed two kind§ of peaks:
strong and weak. Strong peaks occur at positions which are integral multiples of the
inverse of the lattice spacing (Sommerfeld 1954). Weak peaks occur between the strong

peaks. As the size of the crystal increases, the peak-width decreases. The strong peaks

were found to have shifts in their position comparable with the computational error
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Figure 13. Diffraction pattern of 1-d crystal (1, 7, 1, 7,...) with 600 scatterers. The intensity
of the strong peaks can be seen modulated in contrast to the diffraction from an undecorated

lattice.
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Figure 14. Diffraction from a random sequence of 1 and t forming 600 scatterers. It shows
clusters of peaks with large peak-widths.

even when the number of scatterers was as small as 5. The weak peaks were found
to have shifts in their positions slightly more than that observed in the case of 1-d
Fibonacci quasilattice.

In figure 14 the diffraction from a structure consisting of a random sequence of 1
and 1 is shown. One can see clusters of peaks with large width compared to the 1-d
Fibonacci quasilattice and also 1-d crystal. Only a few strong peaks are present when
compared to the other two cases of ordered structures, within the same region of
reciprocal space. The diffraction from a random structure with small number of
scatterers shows many stronger peaks than from a large number of scatterers. When
N is large, one tends to the situation of diffuse rings characteristic of glasses.

Recently, GaAs/AlAs and Nb/Cu Fibonacci superlattices have been grown by
molecular beam epitaxial method by Todd et al (1986), Hu etal (1986), Gay and



*

1-d quasilattices and their diffraction 535

Clemens (1987), and their diffraction properties have been studied using X-rays. The
relevance of Fibonacci sequence to the 1-d quasicrystals (He etal 1988) discovered
in AI-Ni-Si, Al-Cu-Mn and Al-Cu-Co has been pointed out (He eral 1988). Since
peak-shifts are observed even when the number of scatterers is around 300, attempts
to experimentally solve the sequencing of layers in one-dimensional quasicrystals,
may have to take the peak-shifts into account. In fact, the finite segments of 1-d
Fibonacci quasilattices have been used as the repeating unit in the structure factor
calculations of vacancy ordered phases (Chattopadhyay et al 1987).

The distortions in the electron diffraction patterns of 3-d-quasicrystals have been
explained only in terms of phason strain (Bancel and Heiney 1986; Budai et al 1987).
Our calculations indicate that there will be considerable peak-shifts when the
diffraction patterns of two different quasicrystalline grains of the same alloy or different
regions of the same quasicrystalline grain are compared, even if the same amount of
disorder is present. It has also been pointed out recently (Ma et al 1989), that ignoring
the background in the diffraction pattern while calculating the Patterson function
may lead to a shift in peak-positions and the disappearance or introduction of spurious
peaks. It seems possible that peak-shifts can be observed experimentally at the
resolution at which the X-ray diffraction experiments on Fibonacci superlattices have
been performed by Terauchi et al (1988). The peak-positions and widths should change
when the number of layers forming the Fibonacci superlattice is increased from a
small value. Some attempts are being made to analytically find out the peak positions
of the diffraction from finite size quasilattices.
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