335 research outputs found

    Development and implementation of a decision pathway for general practitioners for the management or referral of suspected allergy.

    Get PDF
    Many patients with suspected allergy are referred to specialist care inappropriately. We aimed to develop and implement an online decision pathway to aid General Practitioners' (GPs) management decisions in suspected allergy. Our study involved 1487 GPs, 3 referral management centres, 5 GP system suppliers, 4 primary care trusts, and 1 specialist allergy clinic. The pathway was implemented by 3/5 GP system suppliers, published to Map of Medicine and on a specialist clinic website. In the first year, the pathway ranked in the top 10/160 local care maps accessed via Map of Medicine and was viewed 900 times. Only 96 GPs registered to use the clinic website. Only 110 (7%) GPs responded to the feedback request, of which 13/110 (12%) had used the pathway; nearly all thought it useful. It was used by referral management centres as explanation of rejected referrals. Alternative approaches to embed its use are required. Significance for public healthOne in three people in the UK are affected by allergies during their lifetime. Early diagnosis and appropriate management can improve quality of life and reduce emergency hospitalisation. However, referring patients to secondary care is costly in terms of time and resources. We developed a pathway algorithm to support General Practitioners' (GPs) allergy management and referral decisions to ensure that all referrals to specialist clinics were appropriate. The study illustrates a real world implementation with lessons for those seeking to improve the primary-secondary care interface, implementing pathways in various formats. In the UK, Map of Medicine seems to be the most used software. We demonstrated the difficulty of reaching GPs to encourage adoption of online decision support and suggest new ways forward by expanding care pathways into more detailed protocols for use directly by patients

    Scaling of Huygens-front speedup in weakly random media

    Get PDF
    Front propagation described by Huygens' principle is a fundamental mechanism of spatial spreading of a property or an effect, occurring in optics, acoustics, ecology and combustion. If the local front speed varies randomly due to inhomogeneity or motion of the medium (as in turbulent premixed combustion), then the front wrinkles and its overall passage rate (turbulent burning velocity) increases. The calculation of this speedup is subtle because it involves the minimum-time propagation trajectory. Here we show mathematically that for a medium with weak isotropic random fluctuations, under mild conditions on its spatial structure, the speedup scales with the 4/3 power of the fluctuation amplitude. This result, which verifies a previous conjecture while clarifying its scope, is obtained by reducing the propagation problem to the inviscid Burgers equation with white-in-time forcing. Consequently, field-theoretic analyses of the Burgers equation have significant implications for fronts in random media, even beyond the weak-fluctuation limit.Comment: 7 pages, 3 figures, elsart5p. v2: additional discussion of Hamiltonian formalism; v3: clarification of transient behavio

    Oncology-led early identification of nutritional risk: a pragmatic, evidence-based protocol (PRONTO)

    Get PDF
    Simple Summary Early identification of patients on antineoplastic therapy who are at risk for or already malnourished is critical for optimizing treatment success. Malnourished patients are at increased risk for being unable to tolerate the most effective 'level' and 'duration' of treatment, with grave implications for both the short- (during treatment) and long-term outcomes. Herein, we provide a practical PROtocol for NuTritional risk in Oncology (PRONTO) to enable oncologists to identify patients with or at risk of malnutrition for further evaluation and follow-up with members of the multidisciplinary care team (MDT). Additional guidance is included on the oncologist-led provision of nutritional support if referral to a dietary service is not available. Nutritional issues, including malnutrition, low muscle mass, sarcopenia (i.e., low muscle mass and strength), and cachexia (i.e., weight loss characterized by a continuous decline in skeletal muscle mass, with or without fat loss), are commonly experienced by patients with cancer at all stages of disease. Cancer cachexia may be associated with poor nutritional status and can compromise a patient's ability to tolerate antineoplastic therapy, increase the likelihood of post-surgical complications, and impact long-term outcomes including survival, quality of life, and function. One of the primary nutritional problems these patients experience is malnutrition, of which muscle depletion represents a clinically relevant feature. There have been recent calls for nutritional screening, assessment, treatment, and monitoring as a consistent component of care for all patients diagnosed with cancer. To achieve this, there is a need for a standardized approach to enable oncologists to identify patients commencing and undergoing antineoplastic therapy who are or who may be at risk of malnutrition and/or muscle depletion. This approach should not replace existing tools used in the dietitian's role, but rather give the oncologist a simple nutritional protocol for optimization of the patient care pathway where this is needed. Given the considerable time constraints in day-to-day oncology practice, any such approach must be simple and quick to implement so that oncologists can flag individual patients for further evaluation and follow-up with appropriate members of the multidisciplinary care team. To enable the rapid and routine identification of patients with or at risk of malnutrition and/or muscle depletion, an expert panel of nutrition specialists and practicing oncologists developed the PROtocol for NuTritional risk in Oncology (PRONTO). The protocol enables the rapid identification of patients with or at risk of malnutrition and/or muscle depletion and provides guidance on next steps. The protocol is adaptable to multiple settings and countries, which makes implementation feasible by oncologists and may optimize patient outcomes. We advise the use of this protocol in countries/clinical scenarios where a specialized approach to nutrition assessment and care is not available

    Predicting the safety and efficacy of butter therapy to raise tumour pHe: an integrative modelling study

    Get PDF
    Background: Clinical positron emission tomography imaging has demonstrated the vast majority of human cancers exhibit significantly increased glucose metabolism when compared with adjacent normal tissue, resulting in an acidic tumour microenvironment. Recent studies demonstrated reducing this acidity through systemic buffers significantly inhibits development and growth of metastases in mouse xenografts.\ud \ud Methods: We apply and extend a previously developed mathematical model of blood and tumour buffering to examine the impact of oral administration of bicarbonate buffer in mice, and the potential impact in humans. We recapitulate the experimentally observed tumour pHe effect of buffer therapy, testing a model prediction in vivo in mice. We parameterise the model to humans to determine the translational safety and efficacy, and predict patient subgroups who could have enhanced treatment response, and the most promising combination or alternative buffer therapies.\ud \ud Results: The model predicts a previously unseen potentially dangerous elevation in blood pHe resulting from bicarbonate therapy in mice, which is confirmed by our in vivo experiments. Simulations predict limited efficacy of bicarbonate, especially in humans with more aggressive cancers. We predict buffer therapy would be most effectual: in elderly patients or individuals with renal impairments; in combination with proton production inhibitors (such as dichloroacetate), renal glomular filtration rate inhibitors (such as non-steroidal anti-inflammatory drugs and angiotensin-converting enzyme inhibitors), or with an alternative buffer reagent possessing an optimal pK of 7.1–7.2.\ud \ud Conclusion: Our mathematical model confirms bicarbonate acts as an effective agent to raise tumour pHe, but potentially induces metabolic alkalosis at the high doses necessary for tumour pHe normalisation. We predict use in elderly patients or in combination with proton production inhibitors or buffers with a pK of 7.1–7.2 is most promising

    Developing an online learning community for mental health professionals and service users: a discursive analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is increasing interest in online collaborative learning tools in health education, to reduce costs, and to offer alternative communication opportunities. Patients and students often have extensive experience of using the Internet for health information and support, and many health organisations are increasingly trying out online tools, while many healthcare professionals are unused to, and have reservations about, online interaction.</p> <p>Methods</p> <p>We ran three week-long collaborative learning courses, in which 19 mental health professionals (MHPs) and 12 mental health service users (MHSUs) participated. Data were analysed using a discursive approach to consider the ways in which participants interacted, and how this contributed to the goal of online learning about using Internet technologies for mental health practice.</p> <p>Results</p> <p>MHSUs and MHPs were able to discuss issues together, listening to the views of the other stakeholders. Discussions on synchronous format encouraged participation by service users while the MHPs showed a preference for an asynchronous format with longer, reasoned postings. Although participants regularly drew on their MHP or MHSU status in discussions, and participants typically drew on either a medical expert discourse or a "lived experience" discourse, there was a blurred boundary as participants shifted between these positions.</p> <p>Conclusions</p> <p>The anonymous format was successful in that it produced a "co-constructed asymmetry" which permitted the MHPs and MHSUs to discuss issues online, listening to the views of other stakeholders. Although anonymity was essential for this course to 'work' at all, the recourse to expert or lay discourses demonstrates that it did not eliminate the hierarchies between teacher and learner, or MHP and MHSU. The mix of synchronous and asynchronous formats helped MHSUs to contribute. Moderators might best facilitate service user experience by responding within an experiential discourse rather than an academic one.</p

    Diffusion in Stationary Flow from Mesoscopic Non-equilibrium Thermodynamics

    Get PDF
    We analyze the diffusion of a Brownian particle in a fluid under stationary flow. By using the scheme of non-equilibrium thermodynamics in phase space, we obtain the Fokker-Planck equation which is compared with others derived from kinetic theory and projector operator techniques. That equation exhibits violation of the fluctuation dissipation-theorem. By implementing the hydrodynamic regime described by the first moments of the non-equilibrium distribution, we find relaxation equations for the diffusion current and pressure tensor, allowing us to arrive at a complete description of the system in the inertial and diffusion regimes. The simplicity and generality of the method we propose, makes it applicable to more complex situations, often encountered in problems of soft condensed matter, in which not only one but more degrees of freedom are coupled to a non-equilibrium bath.Comment: 10 pages, accepted in Phys. Rev.

    Diffusion in Stationary Flow from Mesoscopic Non-equilibrium Thermodynamics

    Get PDF
    We analyze the diffusion of a Brownian particle in a fluid under stationary flow. By using the scheme of non-equilibrium thermodynamics in phase space, we obtain the Fokker-Planck equation which is compared with others derived from kinetic theory and projector operator techniques. That equation exhibits violation of the fluctuation dissipation-theorem. By implementing the hydrodynamic regime described by the first moments of the non-equilibrium distribution, we find relaxation equations for the diffusion current and pressure tensor, allowing us to arrive at a complete description of the system in the inertial and diffusion regimes. The simplicity and generality of the method we propose, makes it applicable to more complex situations, often encountered in problems of soft condensed matter, in which not only one but more degrees of freedom are coupled to a non-equilibrium bath.Comment: 10 pages, accepted in Phys. Rev.

    Does oral sodium bicarbonate therapy improve function and quality of life in older patients with chronic kidney disease and low-grade acidosis (the BiCARB trial)? Study protocol for a randomized controlled trial

    Get PDF
    Date of acceptance: 01/07/2015 © 2015 Witham et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Acknowledgements UK NIHR HTA grant 10/71/01. We acknowledge the financial support of NHS Research Scotland in conducting this trial.Peer reviewedPublisher PD

    Concentration of apricot juice using complex membrane technology

    Get PDF
    In this study, pressed apricot (Prunus armeniaca L.) juice was concentrated using complex membrane technology with different module combinations: UF-RO-OD, UF-RO-MD, UF-NF-OD and UF-NF-MD. In case of the best combination a cross-flow polyethylene ultrafiltration membrane (UF) was applied for clarification, after which preconcentration was done using reverse osmosis (RO) with a polyamide membrane, and the final concentration was completed by osmotic distillation (OD) using a polypropylene module. The UF-RO-OD procedure resulted in a final concentrate with a 65-70 °Brix dry solid content and an excellent quality juice with high polyphenol content and high antioxidant capacity.Nanofiltration (NF) and membrane distillation (MD) were not proper economic solutions.The influence of certain operation parameters was examined experimentally. Temperatures of UF and RO were: 25, 30, and 35 °C, and of OD 25 °C. Recycle flow rates were: UF: 1, 1.5, and 2 m3 h−1; RO: 200, 400, and 600 l h−1; OD: 20, 30 and 40 l h−1. The flow rates in the module were expressed by the Reynolds number, as well. Based on preliminary experiments, the transmembrane pressures of UF and RO filtration were 4 bar and 50 bar, respectively. Each experimental run was performed three times. The following optimal operation parameters provided the lowest total cost: UF: 35 °C, 2 m3 h−1, 4 bar; RO: 35 °C, 600 l h−1, 50 bar; OD: 20, 30 and 40 l h−1; temperature 25 °C.In addition, experiments were performed for apricot juice concentration by evaporation, which technique is widely applied in the industry using vacuum and low temperature.For description the UF filtration, a dynamic model and regression by SPSS 14.0 statistics software were applied

    Characterization of pheophytin ground states in Rhodobacter sphaeroides R26 photosynthetic reaction centers from multispin pheophytin enrichment and 2-D 13C MAS NMR dipolar correlation spectroscopy

    Get PDF
    The electronic ground states of pheophytin cofactors potentially involved in symmetry breaking between the A and B branch for electron transport in the bacterial photosynthetic reaction center have been investigated through a characterization of the electron densities at individual atomic positions of pheophytin a from C-13 chemical shift data, A new experimental approach involving multispin C-13 labeling and 2-D NMR is presented. Bacterial photosynthetic reaction centers of Rhodobacter sphaeroides R26 were reconstituted with uniformly C-13 biosynthetically labeled (plant) Pheo a in the two pheophytin binding sites. From the multispin labeled samples 1-D and 2-D solid-state C-13 magic angle spinning NMR spectra could be obtained and used to characterize the pheophytin a ground state in the Rb. sphaeroides R26 RCs, i.e., without a necessity for time-consuming selective labeling strategies involving organic synthesis. From the 2-D solid state C-13-C-13 correlation spectra collected with spinning speeds of 8 and 10 kHz, with mixing times of 1 and 0.8 ms, many C-13 resonances of the [U-C-13]Pheo a molecules reconstituted in the RCs could be assigned in a single set of experiments. Parts of the pheophytins interacting with the protein, at the level of C-13 shifts modified by binding, could be identified. Small reconstitution shifts are detected for the 17(2) side chain of ring IV. In contrast, there is no evidence for electrostatic differences between the two Pheo a, for instance, due to a possibly strong selective electrostatic interaction with Glu L104 on the active branch. The protonation states appear the same, and the NMR suggests a strong overall similarity between the ground states of the two Pheo a, which is of interest in view of the asymmetry of the electron transfer.Solid state NMR/Biophysical Organic ChemistryBiological and Soft Matter Physic
    • 

    corecore