327 research outputs found

    Inclusive Chemical Characterization of Tourmaline: Mossbauer Study of Fe Valence and Site Occupancy

    Get PDF
    We report here the results of a series of inclusive chemical characterizations, including all elements except oxygen, for a suite of 54 tourmaline samples. A combination of analytical techniques was used to analyze for major and light elements (electron microprobe), Fe3+ and Fe2+ (Mossbauer spectroscopy), H (U extraction), and B, Li, and F (ion microprobe, or SIMS). The B content of the tourmalines studied ranges from 2.86 to 3.26 B per formula unit (pfu) with 31 anions; excess boron is believed to reside in the Si site. Li ranges from 0.0 to 1.44 Li pfu and F contents are 0.0-0.91 pfu. H contents range from nearly anhydrous up to 3.76 H pfu and do not correlate simply with Fe3+ content. Mossbauer results show that tourmaline exhibits the entire range of Fe3+/Sigma Fe from 0.0-1.0. Fe2+ is represented in the spectra by three doublets, with occupancy in at least three distinct types of Y sites (with different types of nearest and next nearest neighbors). Fe3+ was found in 26 of the 54 samples studied. Although Mossbauer data do not allow the distinction between Fe-[Y](3+) and Fe-[Z](3+) site occupancies to be made, XRD data on these samples suggest that the majority of Fe3+ is also in Y. Of the samples studied, Fe-[4](3+) occurs in nine; five of those were either olenite or uvite with extensive Na substitution. A mixed valence doublet corresponding to delocalized electrons shared between adjacent octahedra was observed in 14 of the samples studied. Projection pursuit regression analysis shows that distribution of Fe among doublets is a function (albeit a complex one) of bulk composition of the tourmaline and supports the interpretation of doublets representing different populations of neighbors. Variations in Fe3+/Fe2+ ratio cannot be directly related to variations in charge in any single site of the structure. Fe3+/Fe2+ ratio is probably controlled by the prevailing oxidation state in the bull; rock assemblage, rather than by any particular crystal chemical substitution

    Understanding Surface Processes on Mars Through Study of Iron Oxides/Oxyhydroxides: Clues to Surface Alteration and Aqueous Processes

    Get PDF
    We are performing oxidation and reduction reactions on hydrated ferric oxide minerals in order to investigate how these might alter under a variety of conditions on the surface of Mars. Preliminary experiments on ferrihydrite and goethite showed that heating these minerals in a dry oxidizing environment produces fine-grained hematite, while heating these minerals in a reducing environment produces fine-grained magnetite. Under Mars-like oxidation levels this magnetite then oxidizes to maghemite. These reactions are dependent on the presence of water and organic material that can act as a reductant. We are using reflectance and Mossbauer spectroscopy to characterize the reaction products and TEM to analyze the sample texture. Our preliminary results indicate that magnetite and maghemite could be formed in the soil on Mars from ferrihydrite and goethite if organics were present on early Mars

    Probing Rock Type, Fe Redox State, and Transition Metal Contents with Six-Window VNIR Spectroscopy Under Venus Conditions

    Get PDF
    VEM-window data are shown to distinguish among key rock types on Venus, and evaluate redox state and transition metal contents of Venus surface rocks

    Linkages between mineralogy, fluid chemistry, and microbial communities within hydrothermal chimneys from the Endeavor Segment, Juan de Fuca Ridge

    Get PDF
    Rock and fluid samples were collected from three hydrothermal chimneys at the Endeavour Segment, Juan de Fuca Ridge to evaluate linkages among mineralogy, fluid chemistry, and microbial community composition within the chimneys. Mössbauer, midinfrared thermal emission, and visible-near infrared spectroscopies were utilized for the first time to characterize vent mineralogy, in addition to thin-section petrography, X-ray diffraction, and elemental analyses. A 282°C venting chimney from the Bastille edifice was composed primarily of sulfide minerals such as chalcopyrite, marcasite, and sphalerite. In contrast, samples from a 300°C venting chimney from the Dante edifice and a 321°C venting chimney from the Hot Harold edifice contained a high abundance of the sulfate mineral anhydrite. Geochemical modeling of mixed vent fluids suggested the oxic-anoxic transition zone was above 100°C at all three vents, and that the thermodynamic energy available for autotrophic microbial redox reactions favored aerobic sulfide and methane oxidation. As predicted, microbes within the Dante and Hot Harold chimneys were most closely related to mesophilic and thermophilic aerobes of the Betaproteobacteria and Gammaproteobacteria and sulfide-oxidizing autotrophic Epsilonproteobacteria. However, most of the microbes within the Bastille chimney were most closely related to mesophilic and thermophilic anaerobes of the Deltaproteobacteria, especially sulfate reducers, and anaerobic hyperthermophilic archaea. The predominance of anaerobes in the Bastille chimney indicated that other environmental factors promote anoxic conditions. Possibilities include the maturity or fluid flow characteristics of the chimney, abiotic Fe2+ and S2− oxidation in the vent fluids, or O2 depletion by aerobic respiration on the chimney outer wall

    The effect of gamma irradiation on the structural properties of olivine

    Get PDF
    Gamma irradiation studies of (Mg0.905Fe0.095)2SiO4 olivine were performed using X-ray fluorescence method, X-ray diffraction, Raman and Mössbauer spectroscopy. The absorbed doses were 300, 600 and 1000 Gy. Small irradiation doses cause an increase of lattice vibrations and small deformation of both M1 and M2 octahedron. The observed effect is similar to the results expose to high temperature. However, the small deformation takes place only in unit cell of Olivine’s structure

    Constraining Solar System Bombardment Using In Situ Radiometric Dating

    Get PDF
    The leading, but contentious, model for lunar impact history includes a pronounced increase in impact events at around 3.9 Ga. This late heavy bombardment would have scarred Mars and the terrestrial planets, influenced the course of biologic evolution on the early Earth, and rearranged the very architecture of our Solar System. But what if it's not true? In the last decade, new observations and sample analyses have reinterpreted basin ages and "pulled the pin" on the cataclysm - we may only have the age of one large basin (Imbrium). The Curie mission would constrain the onset of the cataclysm by determining the age of a major pre-Imbrium lunar basin (Nectaris or Crisium), characterize new lunar lithologies far from the Apollo and Luna landing sites, including the basalts in the basin-filling maria and olivine-rich lithologies in the basin margins, and provide a unique vantage point to assess volatiles in the lunar regolith from dawn to dusk

    A national quality incentive scheme to reduce antibiotic overuse in hospitals; evaluation of perceptions and impact

    Get PDF
    In 2016/2017, a financially-linked antibiotic prescribing quality improvement initiative (AMR-CQUIN) was introduced across acute hospitals in England. This aimed for >1% reductions in Defined Daily Doses / 1000 admissions of total antibiotics, piperacillin/tazobactam and carbapenems compared with 2013/2014 and improved review of empiric antibiotic prescriptions

    VERITAS (Venus Emissivity, Radio science, InSAR, Topography, And Spectroscopy): Discovering the Secrets of a Lost Habitable World

    Get PDF
    VERITAS is a selected Discovery mission launching in 2028. It will investigate Venus’ geologic evolution and processes that affect rock planetary habitability. Venus’ present condition is a geodynamic analog for early Earth, when the lithosphere was hotter and thinner, plate tectonics and continents began to form, and life emerged. Earth no longer retains a clear record of how these processes began, but Venus may have active subduction—the necessary first step to initiate plate tectonics, as well as analogs of continents. VERITAS will test whether Venus’ tessera plateaus represent the only analogs of continents in the solar system, which formed on Earth when massive quantities of basalt melted in the presence of water. VERITAS will use numerous methods to search for current volcanism and tectonism, including subduction. VERITAS produces global, foundational datasets using two instruments, the Venus Interferometric Synthetic Aperture Radar (VISAR) and the Venus Emissivity Mapper (VEM), plus a gravity science investigation. The VISAR X-band measurements include: 1) a global digital elevation model (DEM) with 250 m postings, 6 m height accuracy, 2) Synthetic aperture radar (SAR) imaging at 30 m horizontal resolution globally, 3) SAR imaging at 15 m for >25% of the surface, and 4) surface deformation from repeat pass interferometry (RPI) at 2 cm precision for >12 targeted areas. VEM covers >70% of the surface in six NIR bands located within five atmospheric windows sensitive to Fe mineralogy, plus eight atmospheric bands for calibration and water vapor measurements, with SNR ≫ VIRTIS. It is a near IR spectral imager with optimized spectral bands for observing the surface of Venus that supports the determination of rock type and the search for active and recent volcanism. VERITAS will use a low circular orbit (< 250 km) and Ka-band uplink and downlink to create a global gravity field with 3 mGal accuracy at 155 km (d&o 123) resolution. VERTIAS also constrains core size and state, using radar tie points to help find k2, the phase lag, and MOIF
    • …
    corecore