104 research outputs found

    Cell wall modifications during conidial maturation of the human pathogenic fungus Pseudallescheria boydii

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Progress in extending the life expectancy of cystic fibrosis (CF) patients remains jeopardized by the increasing incidence of fungal respiratory infections. Pseudallescheria boydii (P. boydii), an emerging pathogen of humans, is a filamentous fungus frequently isolated from the respiratory secretions of CF patients. It is commonly believed that infection by this fungus occurs through inhalation of airborne conidia, but the mechanisms allowing the adherence of Pseudallescheria to the host epithelial cells and its escape from the host immune defenses remain largely unknown. Given that the cell wall orchestrates all these processes, we were interested in studying its dynamic changes in conidia as function of the age of cultures. We found that the surface hydrophobicity and electronegative charge of conidia increased with the age of culture. Melanin that can influence the cell surface properties, was extracted from conidia and estimated using UV-visible spectrophotometry. Cells were also directly examined and compared using electron paramagnetic resonance (EPR) that determines the production of free radicals. Consistent with the increased amount of melanin, the EPR signal intensity decreased suggesting polymerization of melanin. These results were confirmed by flow cytometry after studying the effect of melanin polymerization on the surface accessibility of mannose-containing glycoconjugates to fluorescent concanavalin A. In the absence of melanin, conidia showed a marked increase in fluorescence intensity as the age of culture increased. Using atomic force microscopy, we were unable to find rodlet-forming hydrophobins, molecules that can also affect conidial surface properties. In conclusion, the changes in surface properties and biochemical composition of the conidial wall with the age of culture highlight the process of conidial maturation. Mannose-containing glycoconjugates that are involved in immune recognition, are progressively masked by polymerization of melanin, an antioxidant that is commonly thought to allow fungal escape from the host immune defenses.The study was funded by “Région Pays de la Loire” in the frame of “Myco-AFM” research program). BED was supported by the Dutch Virgo Consortium (FES0908, NGI 050-060-452) and CAPES/BRASIL. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    High viral abundance and low diversity are associated with increased CRISPR-Cas prevalence across microbial ecosystems

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this recordData and code availability: DNA sequence data are publicly available from the SRA database. Accession numbers are listed in Data S1F. No new sequence data was generated for this study. Original code is deposited in the github repositories listed in the Key resources table and statistical analysis scripts are available at https://github.com/s-meaden/Meaden_CB_2021. Code is publicly available at the time of publication. Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.CRISPR-Cas are adaptive immune systems that protect their hosts against viruses and other parasitic mobile genetic elements.1 Although widely distributed among prokaryotic taxa, CRISPR-Cas systems are not ubiquitous.2-4 Like most defense-system genes, CRISPR-Cas are frequently lost and gained, suggesting advantages are specific to particular environmental conditions.5 Selection from viruses is assumed to drive the acquisition and maintenance of these immune systems in nature, and both theory6-8 and experiments have identified phage density and diversity as key fitness determinants.9,10 However, these approaches lack the biological complexity inherent in nature. Here, we exploit metagenomic data from 324 samples across diverse ecosystems to analyze CRISPR abundance in natural environments. For each metagenome, we quantified viral abundance and diversity to test whether these contribute to CRISPR-Cas abundance across ecosystems. We find a strong positive association between CRISPR-Cas abundance and viral abundance. In addition, when controlling for differences in viral abundance, CRISPR-Cas systems are more abundant when viral diversity is low, suggesting that such adaptive immune systems may offer limited protection when required to target a diverse viral community. CRISPR-Cas abundance also differed among environments, with environmental classification explaining roughly a quarter of the variation in CRISPR-Cas relative abundance. The relationships between CRISPR-Cas abundance, viral abundance, and viral diversity are broadly consistent across environments, providing robust evidence from natural ecosystems that supports predictions of when CRISPR is beneficial. These results indicate that viral abundance and diversity are major ecological factors that drive the selection and maintenance of CRISPR-Cas in microbial ecosystems.European Union Horizon 2020Natural Environment Research Council (NERC)Netherlands Organization for Scientific Research (NWO)European Research Council (ERC

    Functional analysis of metagenomes and metatranscriptomes using SEED and KEGG

    Get PDF
    Background: Metagenomics is the study of microbial organisms using sequencing applied directly to environmental samples. Technological advances in next-generation sequencing methods are fueling a rapid increase in the number and scope of metagenome projects. While metagenomics provides information on the gene content, metatranscriptomics aims at understanding gene expression patterns in microbial communities. The initial computational analysis of a metagenome or metatranscriptome addresses three questions: (1) Who is out there? (2) What are they doing? and (3) How do different datasets compare? There is a need for new computational tools to answer these questions. In 2007, the program MEGAN (MEtaGenome ANalyzer) was released, as a standalone interactive tool for analyzing the taxonomic content of a single metagenome dataset. The program has subsequently been extended to support comparative analyses of multiple datasets. Results: The focus of this paper is to report on new features of MEGAN that allow the functional analysis of multiple metagenomes (and metatranscriptomes) based on the SEED hierarchy and KEGG pathways. We have compared our results with the MG-RAST service for different datasets. Conclusions: The MEGAN program now allows the interactive analysis and comparison of the taxonomical and functional content of multiple datasets. As a stand-alone tool, MEGAN provides an alternative to web portals for scientists that have concerns about uploading their unpublished data to a website

    Taxonomic and Functional Microbial Signatures of the Endemic Marine Sponge Arenosclera brasiliensis

    Get PDF
    The endemic marine sponge Arenosclera brasiliensis (Porifera, Demospongiae, Haplosclerida) is a known source of secondary metabolites such as arenosclerins A-C. In the present study, we established the composition of the A. brasiliensis microbiome and the metabolic pathways associated with this community. We used 454 shotgun pyrosequencing to generate approximately 640,000 high-quality sponge-derived sequences (∼150 Mb). Clustering analysis including sponge, seawater and twenty-three other metagenomes derived from marine animal microbiomes shows that A. brasiliensis contains a specific microbiome. Fourteen bacterial phyla (including Proteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes, Firmicutes and Cloroflexi) were consistently found in the A. brasiliensis metagenomes. The A. brasiliensis microbiome is enriched for Betaproteobacteria (e.g., Burkholderia) and Gammaproteobacteria (e.g., Pseudomonas and Alteromonas) compared with the surrounding planktonic microbial communities. Functional analysis based on Rapid Annotation using Subsystem Technology (RAST) indicated that the A. brasiliensis microbiome is enriched for sequences associated with membrane transport and one-carbon metabolism. In addition, there was an overrepresentation of sequences associated with aerobic and anaerobic metabolism as well as the synthesis and degradation of secondary metabolites. This study represents the first analysis of sponge-associated microbial communities via shotgun pyrosequencing, a strategy commonly applied in similar analyses in other marine invertebrate hosts, such as corals and algae. We demonstrate that A. brasiliensis has a unique microbiome that is distinct from that of the surrounding planktonic microbes and from other marine organisms, indicating a species-specific microbiome

    Dispersion of the HIV-1 Epidemic in Men Who Have Sex with Men in the Netherlands: A Combined Mathematical Model and Phylogenetic Analysis

    Get PDF
    Background:The HIV-1 subtype B epidemic amongst men who have sex with men (MSM) is resurgent in many countries despite the widespread use of effective combination antiretroviral therapy (cART). In this combined mathematical and phylogenetic study of observational data, we aimed to find out the extent to which the resurgent epidemic is the result of newly introduced strains or of growth of already circulating strains.Methods and Findings:As of November 2011, the ATHENA observational HIV cohort of all patients in care in the Netherlands since 1996 included HIV-1 subtype B polymerase sequences from 5,852 patients. Patients who were diagnosed between 1981 and 1995 were included in the cohort if they were still alive in 1996. The ten most similar sequences to each ATHENA sequence were selected from the Los Alamos HIV Sequence Database, and a phylogenetic tree was created of a total of 8,320 sequences. Large transmission clusters that included ≥10 ATHENA sequences were selected, with a local support value ≥ 0.9 and median pairwise patristic distance below the fifth percentile of distances in the whole tree. Time-varying reproduction numbers of the large MSM-majority clusters were estimated through mathematical modeling. We identified 106 large transmission clusters, including 3,061 (52%) ATHENA and 652 Los Alamos sequences. Half of the HIV sequences from MSM registered in the cohort in the Netherlands (2,128 of 4,288) were included in 91 large MSM-majority clusters. Strikingly, at least 54 (59%) of these 91 MSM-majority clusters were already circulating before 1996, when cART was introduced, and have persisted to the present. Overall, 1,226 (35%) of the 3,460 diagnoses among MSM since 1996 were found in these 54 long-standing clusters. The reproduction numbers of all large MSM-majority clusters were around the epidemic threshold value of one over the whole study period. A tendency towards higher numbers was visible in recent years, especially in the more recently introduced clusters. The mean age of MSM at diagnosis increased by 0.45 years/year within clusters, but new clusters appeared with lower mean age. Major strengths of this study are the high proportion of HIV-positive MSM with a sequence in this study and the combined application of phylogenetic and modeling approaches. Main limitations are the assumption that the sampled population is representative of the overall HIV-positive population and the assumption that the diagnosis interval distribution is similar between clusters.Conclusions:The resurgent HIV epidemic amongst MSM in the Netherlands is driven by several large, persistent, self-sustaining, and, in many cases, growing sub-epidemics shifting towards new generations of MSM. Many of the sub-epidemics have been present since the early epidemic, to which new sub-epidemics are being added

    Genotyping of Bacillus cereus Strains by Microarray-Based Resequencing

    Get PDF
    The ability to distinguish microbial pathogens from closely related but nonpathogenic strains is key to understanding the population biology of these organisms. In this regard, Bacillus anthracis, the bacterium that causes inhalational anthrax, is of interest because it is closely related and often difficult to distinguish from other members of the B. cereus group that can cause diverse diseases. We employed custom-designed resequencing arrays (RAs) based on the genome sequence of Bacillus anthracis to generate 422 kb of genomic sequence from a panel of 41 Bacillus cereus sensu lato strains. Here we show that RAs represent a “one reaction” genotyping technology with the ability to discriminate between highly similar B. anthracis isolates and more divergent strains of the B. cereus s.l. Clade 1. Our data show that RAs can be an efficient genotyping technology for pre-screening the genetic diversity of large strain collections to selected the best candidates for whole genome sequencing

    The post-vaccine microevolution of invasive Streptococcus pneumoniae

    Get PDF
    The 7-valent pneumococcal conjugated vaccine (PCV7) has affected the genetic population of Streptococcus pneumoniae in pediatric carriage. Little is known however about pneumococcal population genomics in adult invasive pneumococcal disease (IPD) under vaccine pressure. We sequenced and serotyped 349 strains of S. pneumoniae isolated from IPD patients in Nijmegen between 2001 and 2011. Introduction of PCV7 in the Dutch National Immunization Program in 2006 preluded substantial alterations in the IPD population structure caused by serotype replacement. No evidence could be found for vaccine induced capsular switches. We observed that after a temporary bottleneck in gene diversity after the introduction of PCV7, the accessory gene pool re-expanded mainly by genes already circulating pre-PCV7. In the post-vaccine genomic population a number of genes changed frequency, certain genes became overrepresented in vaccine serotypes, while others shifted towards non-vaccine serotypes. Whether these dynamics in the invasive pneumococcal population have truly contributed to invasiveness and manifestations of disease remains to be further elucidated. We suggest the use of whole genome sequencing for surveillance of pneumococcal population dynamics that could give a prospect on the course of disease, facilitating effective prevention and management of IPD

    The Tree versus the Forest: The Fungal Tree of Life and the Topological Diversity within the Yeast Phylome

    Get PDF
    A recurrent topic in phylogenomics is the combination of various sequence alignments to reconstruct a tree that describes the evolutionary relationships within a group of species. However, such approach has been criticized for not being able to properly represent the topological diversity found among gene trees. To evaluate the representativeness of species trees based on concatenated alignments, we reconstruct several fungal species trees and compare them with the complete collection of phylogenies of genes encoded in the Saccharomyces cerevisiae genome. We found that, despite high levels of among-gene topological variation, the species trees do represent widely supported phylogenetic relationships. Most topological discrepancies between gene and species trees are concentrated in certain conflicting nodes. We propose to map such information on the species tree so that it accounts for the levels of congruence across the genome. We identified the lack of sufficient accuracy of current alignment and phylogenetic methods as an important source for the topological diversity encountered among gene trees. Finally, we discuss the implications of the high levels of topological variation for phylogeny-based orthology prediction strategies
    corecore