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SUMMARY
CRISPR-Cas are adaptive immune systems that protect their hosts against viruses and other parasiticmobile
genetic elements.1 Although widely distributed among prokaryotic taxa, CRISPR-Cas systems are not ubiq-
uitous.2–4 Like most defense-system genes, CRISPR-Cas are frequently lost and gained, suggesting advan-
tages are specific to particular environmental conditions.5 Selection from viruses is assumed to drive the
acquisition and maintenance of these immune systems in nature, and both theory6–8 and experiments
have identified phage density and diversity as key fitness determinants.9,10 However, these approaches
lack the biological complexity inherent in nature. Here, we exploit metagenomic data from 324 samples
across diverse ecosystems to analyze CRISPR abundance in natural environments. For each metagenome,
we quantified viral abundance and diversity to test whether these contribute to CRISPR-Cas abundance
across ecosystems. We find a strong positive association between CRISPR-Cas abundance and viral abun-
dance. In addition, when controlling for differences in viral abundance, CRISPR-Cas systems are more abun-
dant when viral diversity is low, suggesting that such adaptive immune systems may offer limited protection
when required to target a diverse viral community. CRISPR-Cas abundance also differed among environ-
ments, with environmental classification explaining roughly a quarter of the variation in CRISPR-Cas relative
abundance. The relationships between CRISPR-Cas abundance, viral abundance, and viral diversity are
broadly consistent across environments, providing robust evidence from natural ecosystems that supports
predictions of when CRISPR is beneficial. These results indicate that viral abundance and diversity are major
ecological factors that drive the selection and maintenance of CRISPR-Cas in microbial ecosystems.
RESULTS AND DISCUSSION

Variation in CRISPR-Cas abundance is partially
explained by viral abundance
While it is well established that CRISPR-Cas immune systems

can protect bacteria and archaea against viral infections under

in vitro laboratory conditions, it remains unclear how important

viruses are as a selective force for the maintenance of

CRISPR-Cas systems in nature, as CRISPR-Cas also targets

other genetic parasites, such as plasmids.11 To assess the role

of viruses as a selective force for CRISPR-Cas, we first compiled

a dataset of 324 metagenomes and quantified the abundance of

CRISPR-Cas systems and viruses in each sample. Our analyses

use all contigs classified as viral, and while the vast majority of
Current Biology 32, 1–8,
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these are of bacteriophage and prophage origin, we refer to

these simply as viral for consistency (benchmarking analyses

of our classifier versus existing tools are available in the supple-

mental information). These metagenomes vary in both CRISPR-

Cas and viral abundance and therefore provided a suitable data-

set to test the hypothesis that viral abundance drives selection

for CRISPR-Cas (Figure 1). We found a positive correlation be-

tween viral abundance and the abundance of CRISPR-Cas sys-

tems (general linear model [GLM]; F1,313 = 81.32; p < 0.0001; Fig-

ure 1), with viral abundance explaining around 20% of the

observed variation in CRISPR-Cas abundance (R2 = 0.209).

We obtained qualitatively the same result when we included

archaeal abundance in our model, which typically carries

more CRISPR-Cas immune systems than bacteria.1 We also
January 10, 2022 ª 2021 The Authors. Published by Elsevier Inc. 1
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Figure 1. CRISPR abundance positively correlates with viral abun-

dance

Correlation between relative viral abundance and the read count (per million) of

metagenomic reads that mapped to CRISPR array repeats across all samples.

The dashed line represents the linear model fit, and shaded area represents

95% confidence interval (p < 0.0001 and R2 = 0.21).
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compared our measure of viral abundance, which is based on

coverage, to measuring the total number of reads that map to

viral contigs and found a near-perfect positive correlation

(Pearson correlation = 0.94; Figure S1). These results strongly

suggest that viruses are a fundamental selective force for the

maintenance of CRISPR-Cas across diverse environmental

conditions.

Environmental conditions influence CRISPR-Cas
abundance
In addition to viruses being a selective force for CRISPR-Cas,

ecological factors may determine when CRISPR-Cas is benefi-

cial, and therefore, CRISPR-Cas abundance may vary across

different natural environments.12 We therefore grouped samples

into ecologically meaningful categories, using the Earth Micro-

biome Project’s sample ontology (EMPO). This framework is

structured to capture two major environmental axes on which

bacterial community composition orient, namely host associa-

tion and salinity.13 Level 1 of the ontology classifies samples

as host associated or free living; level 2 classifies samples as

saline or non-saline, or animal or plant-associated; and level 3

describes microbial environments that can be grouped into

levels 1 and 2 hierarchically (Figure 2A).13 These EMPO classifi-

cations highlighted the varied CRISPR-Cas and viral abundance

in these different environments (Figure 2). Using this EMPO clas-

sification, we observed substantial variation in CRISPR-Cas

abundance, both within and between environment types (Fig-

ure 2). For example, host-associated communities had a greater

prevalence of CRISPR-Cas than free-living environments (GLM;
2 Current Biology 32, 1–8, January 10, 2022
F1,322 = 12.22; p < 0.001), although this classification only

explained around 4%of the variation in CRISPR-Cas abundance

(Figure 2B). In contrast, more fine-scaled classification of envi-

ronments (such as gut, saline sediment, etc. as per EMPO level

3 classification; Figure 2D) explained 22% of the variation in

CRISPR-Cas abundance. These results were also qualitatively

the same when viral abundance was controlled for in the model

(Figure S2). Taken together, these results suggest that, in addi-

tion to viruses as a key selective force for the maintenance of

CRISPR-Cas, there are substantial differences in CRISPR-Cas

abundance among natural environments.

Microbial community composition explains some
variation in CRISPR-Cas abundance
Although we found effects of viral abundance and environmental

classification on CRISPR-Cas abundance, it is plausible that

these effects may be driven by differences in the microbial com-

munity composition as CRISPR-Cas prevalence can differ

among taxa.1,2 We examined whether the variation in CRISPR-

Cas abundance across these metagenomes might be affected

by microbial community composition. We found a weak but sig-

nificant relationship between CRISPR-Cas abundance and

class-level community composition (PERMANOVA; F1, 313 =

12.4; p < 0.001; R2 = 0.04; permutations = 9,999; distance

metric = Bray-Curtis). We next used clustering analyses to

assess how well the EMPO framework levels grouped our sam-

ples based on community composition and extracted the taxa

that best described differences among samples (Figure S3). In

addition, we fitted CRISPR-Cas abundance to this ordination

to identify ‘‘hotspots’’ of samples enriched with CRISPR-Cas

(Figure S3). With this approach, we identified multiple groups

of samples with high CRISPR-Cas abundance, supporting the

notion that microbial phylogeny alone only explains a limited

amount of variation in CRISPR-Cas abundance. Additional fac-

tors may contribute to the differences in CRISPR-Cas abun-

dance across environment types. Furthermore, high rates of hor-

izontal gene transfer (HGT) across taxa, coupled with frequent

gain or loss of CRISPR-Cas, will likely reduce phylogenetic

signal.

As an additional test of the influence of phylogenetic effects on

our results, we assessed the impact of including archaeal abun-

dance in our analyses. Archaea have previously been shown to

be enriched for CRISPR-Cas systems;1 therefore, inclusion of

archaeal abundance in our model should control for this effect.

When we repeated our analysis of the correlation between

CRISPR-Cas abundance and viral abundance, this time

including the abundance of archaea in each sample as a covar-

iate, we found no qualitative difference in result. Taken with the

community composition analysis, these results suggests that

the influence of phylogeny on our results is relatively small

compared to the effect of viral abundance on the prevalence of

CRISPR-Cas immune systems within a microbiome.

CRISPR-Cas and viral abundance correlate across
diverse environments
To explore to what extent the observed variation in CRISPR-Cas

abundance within and between environment types is driven by

variation in viral abundance, we grouped the samples by EMPO

classification and quantified viral abundance for each
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Figure 2. CRISPR abundance varies by environment

Distributions of metagenomic read counts that mapped to CRISPR arrays (read count per million that mapped to a CRISPR array predicted by CRISPRDetect v.3

from assembled contigs) grouped by environmental classification.

(A) Sample sizes and ontology are shown.

(B–D) Samples are grouped using the Earth Microbiome Project ontology (EMPO) at level 1 (B), 2 (C), or 3 (D).
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environment type. Similar to the distributions of CRISPR-Cas

abundance, we found substantial variation in viral abundance

across environment types (Figure S1). The higher level classifica-

tions, EMPO levels 1 and 2, explained 30% and 31% of the vari-

ation observed, respectively, and the finer scale EMPO level 3

explained 34% of this variation in viral abundance (GLM;

F1,314 = 15.78; p < 0.0001; R2 = 0.34). The relatively minor differ-

ence between classification levels suggests that the primary pre-

dictive power comes from EMPO level 1, with host-associated

samples having a greater density of viruses than free-living sam-

ples. Overall, we found that the type of environment significantly

predicts the abundance of viruses present, but that fine-scale

classification adds little predictive power relative to high-level

classification.

Although we found a significant correlation between viral

abundance and CRISPR-Cas abundance, it remained unclear

whether this relationship was consistent across environments.

We therefore assessed whether the strength of this relationship

was constant among each of our EMPO classification levels,

whichwemodeled as an interaction in amultiple regression anal-

ysis. Strikingly, we found significant interaction effects at all

EMPO levels, suggesting that the nature of the relationship be-

tween viral abundance and CRISPR-Cas abundance is, at least

partly, dependent on additional environmental conditions (Data

S1A; Figure 3). This was further validated by post hoc testing

of the correlation between CRISPR-Cas abundance and viral

abundance at each individual environment type (Data S1B). In

this case, we found a consistent positive relationship at EMPO

levels 1 and 2 but more varied results at level 3 (Figure 3), sug-

gesting additional ecological factors may be playing a role in

some environments. For example, when taking all EMPO level

3 classifications with more than 10 observations per group,

non-saline sediments show a strong positive correlation be-

tween CRISPR-Cas abundance and viral abundance (adjusted

p < 0.001; Pearson correlation = 0.71; n = 15). In contrast, non-

saline water environmental samples show no significant correla-

tion between CRISPR-Cas abundance and viral abundance

(adjusted p = 1; Pearson correlation = �0.18; n = 34; all correla-

tions can be found in Data S1C). Taken together, these results

indicate that viral abundance typically correlates positively with

CRISPR-Cas abundance but that the strength of this relationship

is dependent on the particular environment.

Virus diversity negatively correlates with CRISPR-Cas
abundance
Both theory and in vitro experiments predict that low viral genetic

diversity is also an important determinant of the benefits of

CRISPR-Cas immunity.7–10 This theory suggests that excess

viral sequence diversity prevents the acquisition of sufficient

spacer diversity to protect against the many different viruses.

To test this prediction, we quantified viral diversity for each
Figure 3. CRISPR abundance positively correlates with viral abundanc

Correlations between relative viral abundance and the read count (per million) of m

(A and B) Environments are categorized according to the EMPO at level 1 (A) or

(C) Samples grouped at EMPO level 3 are divided into significant correlations or

shaded areas represent 95% confidence intervals.

(D) The number of samples collected in each country with the circle representing

See also Figures S1 and S2 and Data S1.
environment type and examined whether this correlated with

CRISPR-Cas abundance. However, this analysis may be

confounded by correlations between viral diversity and viral

abundance. Indeed, in our dataset, viral diversity was strongly

correlated with viral abundance (GLM; F1,295 = 208.6; p <

0.0001; R2 = 0.41). We therefore normalized the viral diversity

scores by viral abundance for each sample. We then tested

the correlation between CRISPR-Cas abundance and normal-

ized viral diversity. In agreement with theory, we found a negative

correlation between CRISPR-Cas abundance and normalized

viral diversity for all viral diversity metrics used (Figure 4; Data

S1D). The metrics used spanned multiple levels, with richness,

evenness, and Shannon’s index describing inter-population

diversity. By contrast, Nei’s diversity metric describes the

intra-population genetic variation. Together, these results sug-

gest that CRISPR-Cas is most effective when viral diversity is

low, which supports that CRISPR-Cas immunity relies on

sequence identity between spacer sequences and the viral pro-

tospacer sequence and array sizes are finite.

Broader implications
Despite recent studies suggesting that CRISPR-Cas abundance

varies across natural environments, such as soil14 and the hu-

man microbiome,15 the ecological factors that drive variation in

CRISPR-Cas prevalence across natural microbial communities

remained unclear.11 Furthermore, the extent of this variation

across a much wider range of environments remained unex-

plored. We addressed this gap by using metagenomic data to

quantify CRISPR array abundance within each metagenome

and linked these data to the associated viral community present.

We identified two key factors that predict CRISPR-Cas abun-

dance: viral abundance and viral diversity. These factors are

likely of primary importance, as the observed correlations are

consistent across diverse environments. Most metagenomic

studies are likely to miss a large fraction of the viral community

due to biases in purification, DNA extraction, and sequencing

technology;16 however, the samples in this study all fulfilled a

standardized selection criteria (STARMethods). These data sug-

gest that relative abundance and diversity are key predictors of

CRISPR-Cas prevalence. Taken together, our results show that

high viral abundance and low diversity are major drivers of the

selection and maintenance of CRISPR-Cas systems in nature.

There are likely factors in addition to viral abundance and diver-

sity that contribute to CRISPR-Cas abundance in the environment

because the correlations had relatively low R2 values (20% for

abundance and 22% for normalized diversity). For example,

many alternative phage defense systems have been described

and, much like CRISPR-Cas, show scattered distributions even

in closely related bacterial strains.17 The interplay and redundancy

between different phage defense systems is poorly characterized

and may also contribute to CRISPR-Cas distributions in different
e across environments

etagenomic reads thatmapped to CRISPR array repeats per environment type.

2 (B).

non-significant correlations (NS). Dashed lines represent linear model fits, and

samples collected in the Pacific Ocean.
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Figure 4. CRISPR abundance negatively correlates with normalized viral diversity metrics

Correlations between viral diversity (normalized by viral load per sample) and CRISPR abundance (reads per million that map to CRISPR arrays). Panels represent

Nei’s diversity index (A), Shannon’s index (B), contig richness (C), or contig evenness (D). (A) represents intra-contig viral diversity while (B)–(D) represent inter-

contig viral diversity. Dashed lines represent linear model fits, and shaded areas represent 95% confidence intervals. See also Data S1.
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environments. Understanding the environmental parameters that

select for different defenses will be crucial future research. For

example, we see greater CRISPR-Cas abundance in host-associ-

ated samples over free-living samples, but it is unknown whether

alternative defense mechanisms are favored in these free-living

samples or whether there are fewer defenses overall.

Regarding CRISPR-Cas, multiple environmental parameters

have been predicted to interact negatively with these systems.

For example, aerobicity showed a negative association with

CRISPR-Cas prevalence during a modeling analysis of bacterial

traits,12 possibly due to an incompatibility between the require-

ment for non-homologous end join repair (NHEJ) in aerobic

respiration and type II CRISPR-Cas sytems.18 More generally,

intracellular defenses may be favored over surface receptor

modifications under certain environmental conditions, as these

have been shown to be subject to trade-offs with both biotic

and abiotic factors.19–21 In addition, recent work has demon-

strated that regulation of phage defenses, including CRISPR-

Cas, is mediated by environmental conditions.22 There are also

likely additional roles of plasmids that we have not examined in

our analysis, as a recent longitudinal study found plasmids

were targeted by CRISPR-Cas systems at 5 times the rate of

phages.23 Overall, our results demonstrate that phage-mediated

selection is a major driver of CRISPR-Cas prevalence, but addi-

tional biotic and abiotic complexity likely shapes the strength of

this relationship.
6 Current Biology 32, 1–8, January 10, 2022
Previous theoretical models predicted that CRISPR-Cas will

be less favorable in dense and diverse viral communities.7,8

Above a threshold of phage genetic diversity, CRISPR-Cas be-

comes ineffective and is lost due to an associated fitness cost,

and this threshold is reached more often in large viral popula-

tions.7 While these predictions seem intuitive, our results sug-

gest that, although low viral diversity does indeed favor

CRISPR-Cas, low viral density does not. It is possible that viral

abundance rarely reaches levels in nature that are sufficient to

preclude an effective CRISPR-Cas response, even if such den-

sities are readily achievable in laboratory experiments.9,10,24

Future work may reveal the ecological differences between

CRISPR-Cas types, as different types are likely to coevolve

with viruses in fundamentally different ways.25

Genomic evidence demonstrates that CRISPR-Cas systems

are frequently acquired and lost,26,27 and empirical studies

show that they can be mobilized through HGT.28,29 Notably, in

a previous longitudinal study, CRISPR-Cas prevalence

increased through time, even in phyla that decreased in abun-

dance,14 again suggesting high mobility and positive selection

for CRISPR-Cas immunity. Consistent with high rates of HGT

of CRISPR-Cas, our results demonstrate that, while phylogeny

can influence the CRISPR-Cas repertoire, it is not the primary

driver of selection in nature.

In summary, by quantifying the role of the viral community in

shaping CRISPR-Cas abundance in complex, diverse natural
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communities, we found that high viral abundance but low diver-

sity drives the selection andmaintenance of CRISPR-Cas across

a range of environments. Future work that embraces both the

abiotic and biotic complexity of natural systems is required to

further understand the prevalence of CRISPR-Cas.
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HMMER Version 3.2.1 Eddy40 http://hmmer.org/

Diamond version v0.8.38.100 Buchfink et al.41 https://github.com/bbuchfink/diamond

metaGeneMark Zhu et al.42 https://github.com/aghozlane/spasm/tree/

master/MetaGeneMark

VirSorter2 version 2.2.2 Guo et al.43 https://github.com/jiarong/VirSorter2

DeepVirFinder version 1.0 Ren et al.44 https://github.com/jessieren/

DeepVirFinder

cd-hit Li and Godzik45 http://weizhong-lab.ucsd.edu/cd-hit/
46 https://github.com/lh3/bwa
Bwa-mem Li and Durbin
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact (S.

Meaden@exeter.ac.uk).

Materials availability
This study did not generate unique reagents.
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Data and code availability
DNA sequence data are publicly available from the SRA database. Accession numbers are listed in Data S1F. No new sequence data

was generated for this study. Original code is deposited in the github repositories listed in the Key resources table and statistical

analysis scripts are available at https://github.com/s-meaden/Meaden_CB_2021. Code is publicly available at the time of publica-

tion. Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

In October 2018, we used the SRA Advanced Search Builder and downloaded the metadata of all metagenomic samples with the

properties ‘‘Platform: Illumina, Source: DNA, Access: Public, Organism: metagenome.’’ We then filtered out RNASeq, amplicon

and treatment-specific samples which resulted in 6367 samples. However, 3243 of the samples did not have any usable ‘‘source

environment’’ information and out of the remaining samples 1886 samples were ‘‘gut’’ samples collected from humans and other

animals. To mitigate biases arising from skewed sample numbers from specific source environments we decided to randomly select

up to 10metagenomes per source environment (e.g., boreal lake sediment, human gut, marine sediment etc) with eachmetagenome

containing at least 1 million reads with a minimum length of 100 nucleotides (nt) and insert size > = 150. After taxonomic profiling,

samples with > 10% eukaryotic contamination were also removed, as well as samples that were no longer publicly available on

30/08/2021, resulting in a total of 324 metagenomic libraries. Paired-end metagenomic libraries (sequenced with Illumina platform)

were then downloaded from the NCBI SRA database (Data S1F).

METHOD DETAILS

Computational pipeline
An overview of the computational pipeline is provided in Figure S4.

Metagenomic sample assembly
Libraries were processed with BBMap suite of tools for error correction30 and for each metagenomic library a representative FASTA

file was created by combining both the merged and unmerged reads. A total of 324 libraries (each library containing at least 1 million

reads with a minimum length of 100 nt and insert size > = 150) were selected to represent a wide range of biome diversity (Data S1F).

Libraries were assembled using MegaHit (version 1.1.3)31 with default parameters and contigs with minimum length 200nt were re-

tained. Contigs were classified as archaea, bacteria or virus using a purpose-built classification tool: MIUMS (Microbial Identification

Using Marker Sequence, https://github.com/ambarishbiswas/miums_v1.0). MIUMS is designed to classify contigs based on a refer-

ence database containing protein sequence fragments highly specific to bacteria, archaea, viruses. Full details of MIUMS reference

database construction and prediction process are provided in the MIUMS tool development section of the STAR Methods. Each

metagenome was then subsampled to 1 million randomly selected reads with a minimum length of 100 nt.

Generation of archaeal and bacterial abundance tables
Subsampled reads were screened using metaxa232 (GSU parameters: -g ssu -f f, LSU parameters: -g lsu -f f) to generate a table of

bacterial and archaeal abundances. Both the LSU and SSU based methods were used. A reference sequence database was made

from contigs classified as viral by MIUMS. Subsampled reads were then mapped to the assembled contigs using Magic-BLAST33

(parameters: -no_unaligned -no_query_id_trim -perc_identity 95 -outfmt tabular). Reads with a minimum of 95% sequence identity

and coverage were used.

CRISPR array identification
Accurately identifying CRISPR arrays in metagenomic data is challenging for a number of reasons. First, a large proportion of the

direct repeats (DRs) identified from metagenomic contigs often show little sequence similarity to the CRISPR repeats found in pub-

lished genomes and lack an isolated representative.2 Second, CRISPR arrays found in metagenomic reads are generally short (i.e., <

3 DRs) and often missing one or both flanking regions. To overcome these issues we combined information on existing, published

genomes and their CRISPR arrays alongwith de novo extraction of putative CRISPR arrays from our assembled contigs (Figure S4). A

database of metagenomic CRISPR arrays was first constructed by processing all assembled contigs with CRISPRDetect version 3

(CRISPRDetect3, https://github.com/ambarishbiswas/CRISPRDetect_3.0). CRISPRDetect version 3 was also modified to allow pre-

diction of shorter CRISPRs (e.g., partial/broken CRISPRs with as little as 1.5 repeats). A higher CRISPR likelihood score cut-off of 4.5

was used instead of the default score cut-off of 3 to reduce potential non-CRISPR arrays. CRISPRDetect34 uses several CRISPR

elements (e.g., repeats, spacers, cas genes, AT composition of flanking regions etc.) from published genomes to identify and sepa-

rate true CRISPRs from other genomic repeats. In this study, a modified version of the CRISPRDetect tool was used, which uses a

reference repeat database created using the cluster representative DRs from the metagenomic contigs as well as DRs found in pub-

lished genomes. Predicted CRISPR arrays were checked to ensure that the total array degeneracy (i.e., number of insertion, deletion,

mutation or presence of Ns in the array) was less than the total number of DRs in the array, which resulted in 51395 CRISPR arrays.

Direct repeat sequences (23 to 60 nt) were extracted and clustered with cd-hit-est (parameters: -n 3 -c 0.90 -aL 0.90 -aS 0.90).45

30370 clusters were derived from 33745 unique DR sequences. Of these clusters, 22808 contained a single DR sequence while
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7,562 contained multiple DR sequences. Only the multi-DR sequence containing arrays were taken forward for quantification as

these represent sequences with a higher probability of containing true CRISPR arrays.

Subsampled reads were then screened against this database using metaCRISPRDetect (https://github.com/ambarishbiswas/

metaCRISPRDetect_1.0), which supports rapid identification of CRISPR arrays in short reads using user-provided reference repeat

database as an extension of CRISPRDetect.34 Arrays with a likelihood score > 3 were added to the existing CRISPR reference data-

base. Subsampled reads were then mapped to the reference database using blastn35 [parameters: -task blastn-short with default

parameters].

Identifying potential false positive CRISPRs
CRISPRs predicted from metagenomes are generally short, often incomplete and missing flanking regions which makes it hard to

distinguish true CRISPRs from other genomic repeats. To measure howmany of our identified arrays occurred in known prokaryotic

genomes we compared the metagenomic CRISPR repeats against CRISPRs found in RefSeq and GenBank prokaryotic sequences

(sequences published before September 9, 2019) using NCBI blast (parameters: -task blastn -word_size 11 -dust no -culling_limit 1

-num_alignments 1).47 Metagenomic DRs with > = 90% identity and > = 90% sequence coverage against RefSeq or GenBank DRs

were considered as a positive match. Out of the 7562 repeat clusters 1649 were found in CRISPRs predicted from RefSeq or Gen-

Bank prokaryotic sequences. Similarly, the metagenomic repeats were screened against an in silico generated set of eukaryotic

reads from 6 eukaryotic reference genomes (see Key resources table). Ten thousand 250bp paired reads were generated from

each reference genome using WGSIM (https://github.com/lh3/wgsim). Eukaryotic reads were subsampled to an equal depth to re-

move differences due to genome size. Out of the 7562 DR clusters a total of 168 repeat clusters were found in the eukaryotic reads

suggesting a high level of eukaryotic sequence contamination may increase the false positive rate of our analysis. We therefore

removed samples where > 10% of reads were classified as of eukaryotic origin.

Microbial Identification Using Marker Sequence (MIUMS) tool development
MIUMS (version 1.0) utilizes a reference database of protein sequence fragments that are highly specific to their source organism.

The process of constructing database is described below.

Selection of reference sequences
For the construction of a reference database of marker amino acid sequences, all amino acid sequences from 224 archaeal, 2810

bacterial and 3958 viral (4185) species (published before 1st of March 2017; Refseq release version 79; minimum sequence length

of 5000 nt) were selected as the source of the protein sequences for the marker sequence database. These resulted in 155585

archaeal, 2219071 bacterial and 229026 viral amino acid sequences. In addition, a eukaryotic protein sequence database was con-

structed from 16179736 eukaryotic proteins. The taxonomic information of these protein sequences were collected from NCBI tax-

onomy files (https://ftp.ncbi.nlm.nih.gov/pub/taxonomy/). MIUMS relies on a database of marker protein fragments constructed from

RefSeq proteins, where each protein fragment contains two levels of classifications; primary (i.e., archaea, bacteria, viruses) and sec-

ondary (e.g., chromosome, plasmid, prophage and phage). During the construction of the marker protein fragment database, we

used NCBI Protein search builder (https://www.ncbi.nlm.nih.gov/protein) to download the RefSeq protein accessions of all plasmid,

phage and prophages (both archaeal and bacterial) using search keywords ‘plasmid’, ‘phage’ and ‘prophage’. The taxonomic details

of the source protein sequences are obtained using the taxon_id associated to the protein accession. The secondary details are ob-

tained from the protein definition and annotation using the default setting: ‘-report_dual_predictions’. Metagenomic sequences that

matches marker protein fragments to one or more of these proteins (i.e., with secondary classification of plasmid, phage and pro-

phage) are classified as such. Contigs that had a primary or secondary classification as prophage or provirus were included in

our viral metrics in this study.

Construction of short protein sequence fragments
The construction of a database ofmarker protein sequence fragments is amulti-step process, which includes i). removal of sequence

domains and ii). removal of all potential inter (super)kingdom homologous sequence regions from the target protein sequences.

The selected protein sequences from archaea, bacteria and viruses were screened with Pfam-A HMMprofiles (version 30.0)48 and

hmmsearch (HMMER version 3.2.1 with default parameters and–domtblout).40 Using the reported domain regions in the sequences,

the protein sequences were split into multiple sequence fragments excluding the domain regions.

The sequence fragments were then concatenated into a single protein sequence database and used in an all-versus-all sequence

similarity search using diamond (version v0.8.38.100; parameters:–evalue 0.001–sensitive–no-self-hits).41 By analyzing the diamond

output file, longer sequence fragments which contain shorter sequence fragments were identified and further split into multiple

sequence fragments followed by construction of a new sequence database. This process of identification of shorter sequence frag-

ments continued in a cyclic manner till there were no new fragments identified.

Removal of inter superkingdom specific protein fragments
The sequence fragments were then separated into their associated superkingdom and screened against the other superkingdom

specific primary protein sequences (including eukaryotic protein sequences) using diamond (parameters:–evalue 0.001–sensitive).
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Sequence fragments that were found to have inter (super)kingdom matches were identified and removed. This resulted in 610460

archaeal, 8312644 bacterial and 677951 viral marker protein fragments.

Assigning taxa specificity to the protein fragments
The archaeal, bacterial, and viral protein fragments were then screened against their own superkingdom specific primary source pro-

teins using diamond (parameters:–evalue 0.001–sensitive) and the taxa specificity of each protein fragment to each of the higher

taxonomic levels (i.e., phylum, class, order, family, genus and species) was determined using lowest common ancestor (LCA) algo-

rithm from all reported diamond matches.

Taxonomic classification of metagenomic sequences
The default MIUMS runs involve three steps; i) assembly of metagenomic reads, ii) prediction of protein sequence in the assembled

contigs using metaGeneMark,42 iii) screening the protein sequences against the marker protein fragment database using diamond

(parameters:–evalue 0.001–sensitive). Contigs with metaGeneMark predicted proteins that contains multiple matches to the protein

fragments above stringency cutoffs (e.g., overlapping length > = 21aa and sequence identity > = 40%) are assigned taxonomy based

on the matched protein fragment’s taxa specificity and LCA algorithm. An output table is generated, which shows a list of classified

contigs with associated taxonomy.

The raw reads (unless a subsampling of the reads were done) were mapped to the entire assembled contigs using magicblast.33

The magicblast output file is analyzed to identify all reads mapping to the classified contigs with minimum 99% identity and 99%

sequence coverage. An output table is generated that shows each of those reads and their associated taxonomy.

Benchmarking of viral classification tools
In order to assess the accuracy of MIUMS for extracting viral contigs, we compared against existing tools using a test dataset of

known sequences. The reference database of marker protein fragments that MIUMS V1.0 uses was constructed from sequences

published before 1st of March 2017. Since then the number of newly released viral sequences in the NCBI RefSeq database has

nearly doubled (5343 genomic DNA/RNA sequences published between 01-Mar-2017 and 01-June-2021; with minimum length

500 nt). To assess the performance of MIUMS against these newly published sequences; we randomly added 5000 of these viral

sequences in a test dataset, comprising closed, whole genomes and contig-level assemblies. The test dataset was also supple-

mented with 15000 archaea, 15000 bacteria and 15000 eukaryotic sequences published during the same time period mentioned

above (with minimum length cut-off of 500 nt and maximum length of 25000 nt). We also included eukaryotic sequences (randomly

selected from animal, plant, fungi and protists sequences). This test dataset was analyzed with MIUMS V1.0, VirSorter2 (version

2.2.2)43 and DeepVirFinder (version 1.0)44 with default parameters. The summary outputs from the 3 tools used and their respective

precision and recall scores are available in Data S1E.

DeepVirFinder reports a score between 0 to 1 for every input sequence, where a higher score (i.e., close to 1) is a strong indicator of

a sequence being viral. Against a minimum score cutoff of 0.95, DeepVirFinder correctly predicted 2092 viruses and falsely predicted

4463 non-viral sequences (Archaea: 1500, Bacteria: 1058, Eukaryotes: 1905) as viruses. While reducing the minimum score-cutoff to

0.75 increases the total number of correctly predicted viral sequences to 3167, it also drastically increases the amount of false pre-

dictions to 9944 (Archaea: 3572, Bacteria: 2364, Eukaryotes: 4008). This trend continues with lower minimum score-cutoff to 0.50

(Viruses: 3988, Archaea: 6626, Bacteria: 4417, Eukaryotes: 6678) and 0.25 (Viruses: 4566, Archaea: 9765, Bacteria: 7054, Eukary-

otes: 9594).

VirSorter2 generates scores between 0 to 1 (computed on both single and double stranded DNA) and reports potential viral se-

quences where the maximum of the two scores are > = 0.50. With a minimum score cutoff of 0.95, VirSorter2 correctly predicted

2367 viral sequences with 1317 non-viral sequences (Archaea: 97, Bacteria: 1191, Eukaryotes: 29) falsely predicted as viruses.

Reducing the minimum score cutoff to 0.75 increases correctly the predicted viruses to 2798 but increases the falsely predicted

non-viral sequences to 2018 (Archaea: 248, Bacteria: 1692, Eukaryotes: 78). At the default score cutoff of 0.50, VirSorter2 correctly

predicted 3103 viral sequences with 2427 non-viral sequences (Archaea: 382, Bacteria: 1905, Eukaryotes: 140) falsely predicted to

be viral.

In comparison, based on the main taxonomy output table, MIUMS accurately predicted 2557 viruses with a total of 32 non-viral

sequences (Archaea: 0, Bacteria: 32, Eukaryotes: 0) falsely predicted to be viruses. The secondary taxonomy output table shows

another 540 viral sequences correctly being predicted as potential viruses with 124 non-viral sequences (Archaea: 3, Bacteria:

122, Eukaryote: 0) falsely reported as potential viral sequences. A total of only 13 eukaryotic sequences falsely predicted as archaea,

bacteria or viruses (Archaea: 0, bacteria: 12, Viruses: 1). We note that each of these tools handle prophages differently, which can

affect precision and recall values, and software should be chosen based on the desired outcome i.e., inclusive or exclusive or

prohages.

QUANTIFICATION AND STATISTICAL ANALYSIS

CRISPR array quantification
Abundance tables were generated for all spacers and direct repeat sequences by tallying the number of reads that mapped to a given

DR with 100% sequence identity and coverage.
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Virome diversity and abundance analysis
To assess the diversity of viruses in the different environments, we analyzed all MIUMS classified contigs from the 324metagenomes.

Across all datasets, we identified 2583 archaeal proviruses, 375179 bacterial prophages, 1218279 bacteriophages, and 174792

archaeal viruses. Per metagenome, the sub-sampled reads used for the CRISPR quantification analysis were mapped to the total

set of all viral contigs with bwa mem.46 To quantify the genetic diversity of the viral community, we calculated the richness as the

total number of detected viral contigs, plus the evenness and Shannon’s diversity index based on relative abundances calculated

from the mean depth of coverage of all detected viral contigs. The intra-population diversity (micro-diversity) was calculated as

the mean heterozygosity of viruses in the community by averaging Nei’s per-nucleotide diversity index across all detected contigs.49

Nei =
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i = 1
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Xn
j = 1

p2
j

!

where pj is the frequency of allele j at the position i of a contig of the length L, N is the number of viruses in a dataset. Single nucleotide

variability was assessed with VarScan software.36

Viral abundance was calculated by first collecting the average depth values for all viral contigs in each sample using the ‘jgi_sum-

marize_bam_contig_depths’ script from the Metabat package.37 These depth scores were then summed per sample to give an

approximation of overall viral abundance relative to bacterial abundance. An additional abundance estimate of the fraction of reads

mapping to viral contigs was generated by calculating the number of unmapped reads as reported by samtools idxtstats38 (See Fig-

ures S1D and S1E).

Statistical analysis
For each sample, the number of reads that mapped to a direct repeat were counted to give a measure of CRISPR array abundance

per sample. Earth Microbiome Project Ontology levels were assigned using the framework previously described13 (Figure 1D) based

on the associated metadata from the NCBI short read archive (SRA). In the case of bioreactor samples, a literature search was con-

ducted to identify the original material described in the associated study (see Data S1F).

General linear models (GLM) were constructed for each of the reported correlations. In each case log10 transformations were

applied to conform to model assumptions. Checks of model residuals were performed to assess model fit. Significance was deter-

mined using F-tests between null models and those containing the variable or interaction of interest.

Microbial community assessment
CRISPR is more common in archaea. Therefore, in order to minimize any phylogenetic effects deriving from high archaeal abun-

dances in samples we estimated the number of archaeal reads in the subsampled reads using metaxa232 and converted this to rela-

tive abundance per sample. We then included this value as a fixed effect in additional GLMs to check the influence of archaeal abun-

dance on our results. For additional phylogenetic assessments, reads classified as non-prokaryotic were removed and relative

abundances were generated using the output from metaxa2 in order to assess effects of community composition. Permutational

ANOVAs were performed on species abundance matrices using Bray-Curtis dissimilarity and CRISPR abundance as an explanatory

variable with 9999 permutations, using the function ‘adonis’ from ‘vegan’ package.39 Visualization of clustering analyses, at the class

level, was performed using non-metric multidimensional scaling (NMDS) with Bray-Curtis dissimilarity through the ‘metaMDS’ func-

tion in ‘vegan’39. Smooth surfaces were fit to these points via a generalized additivemodel (GAM), using either CRISPR abundance as

the explanatory term, with the ‘ordisurf’ function in ‘vegan’44 (See Figure S3).
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Figure S1. Viral abundance varies by environment, correlates with viral diversity and is robust 

to quantification method, Related to Figure 3 and STAR methods. Distributions of viral 

abundances (sum of viral contig coverage depth per sample) across EMPO level 1 categories (A), 

level 2 categories (B) and level 3 categories (C). Points represent metagenomic samples. D) 

Comparison of viral abundance quantification methods. Coverage-based measurements may be 

inflate abundance estimates if viral genomes are fragmented into many small contigs. Comparison of 

the sum of viral contig coverage against the fraction of reads that map to a viral contig shows a strong 

correlation (Pearson correlation = 0.94, p < 0.0001). All samples were subsampled to 1 million reads 

prior to mapping. E) Correlation between the number of viral contigs per sample and viral abundance 

(sum of viral contig coverage depth per sample). Line represents linear model fit, shaded areas 

denote 95% confidence intervals and R2 = 0.51. 
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Figure S2. Environmental effects when controlling for viral abundance, Related to Figure 2. 

Model coefficients from general linear models that model how environmental classification affects 

CRISPR abundance. Panels represent A) EMPO level 1, B) EMPO level 2 and C) EMPO level 3. 

Points and 95% confidence intervals represent how much each level contributes to the increase (or 

decrease) in CRISPR abundance, relative to the first  level of the factor (e.g. ‘free-living’ for A, ‘host 

associated’ for B and ‘animal secretion’ for C. Note that in almost all cases the environmental 

classifications do not overlap with the intercept, despite inclusion of viral abundance in the model. 
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Figure S3. Phylogenetic ordinations of sample community composition, Related to STAR 

methods. Ordinations of sample community compositions at the Class level. Points represent 

individual metagenomic samples and are clustered using non-metric multidimensional scaling 

(NMDS) on Bray-Curtis dissimilarity scores. (A) Colors represent the sample classification at EMPO 

level 2 and arrows represent the top 10 species loadings. (B) The same ordination of samples with 

CRISPR abundance used in a generalized additive model (GAM) to fit a surface predicting CRISPR 

abundance. 
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Figure S4. Overview of computational pipeline, Related to STAR methods. Overview of the 

computational pipeline used to generate CRISPR abundance tables, microbial and viral community 

abundance tables. In each stage, only the case (yes/no) where data is retained is presented. 
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