46 research outputs found

    Lithiation and electrophilic substitution of dimethyl triazones

    Get PDF
    The lithiation and electrophilic substitution of dimethyl triazones is described. Directed lithiation or tin–lithium exchange of dimethyl triazones afforded the corresponding dipole stabilized nucleophiles that were trapped with various electrophiles. Keto-triazone derivatives accessed by acylation of such nucleophiles were readily converted into the corresponding imidazolone heterocycles.National Institutes of Health (U.S.) (National Institute of General Medical Sciences (U.S.) GM074825

    C7-Derivatization of C3-Alkylindoles Including Tryptophans and Tryptamines

    Get PDF
    A versatile strategy for C7-selective boronation of tryptophans, tryptamines, and 3-alkylindoles by way of a single-pot C2/C7-diboronation–C2-protodeboronation sequence is described. The combination of a mild iridium-catalyzed C2/C7-diboronation followed by an in situ palladium-catalyzed C2-protodeboronation allows efficient entry to valuable C7-boroindoles that enable further C7-derivatization. The versatility of the chemistry is highlighted by the gram-scale synthesis of C7-boronated N-Boc-L-tryptophan methyl ester and the rapid synthesis of C7-halo, C7-hydroxy, and C7-aryl tryptophan derivatives.National Institute of General Medical Sciences (U.S.) (GM089732)National Institute of General Medical Sciences (U.S.) (GM074825)National Science Foundation (U.S.) (CHE-1205646

    Observations in the Synthesis of the Core of the Antitumor Illudins via an Enyne Ring Closing Metathesis Cascade

    Get PDF
    Observations concerning the synthesis of the core spirocyclic AB-ring system of illudins using an enyne ring closing metathesis (EYRCM) cascade are discussed. Substituent effects, in addition to optimization of the reaction conditions and the olefin tether for the key EYRCM reaction, are examined.Alfred P. Sloan Foundation. FellowshipArnold and Mabel Beckman Foundation. Beckman Young InvestigatorCamille & Henry Dreyfus Foundation. Teacher-ScholarNational Institutes of Health (U.S.) (National Institute of General Medical Sciences) (U.S.) (GM074825

    Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease

    Get PDF
    Emerging coronaviruses (CoVs) cause severe disease in humans, but no approved therapeutics are available. The CoV nsp14 exoribonuclease (ExoN) has complicated development of antiviral nucleosides due to its proofreading activity. We recently reported that the nucleoside analogue GS-5734 (remdesivir) potently inhibits human and zoonotic CoVs in vitro and in a severe acute respiratory syndrome coronavirus (SARS-CoV) mouse model. However, studies with GS-5734 have not reported resistance associated with GS-5734, nor do we understand the action of GS- 5734 in wild-type (WT) proofreading CoVs. Here, we show that GS-5734 inhibits murine hepatitis virus (MHV) with similar 50% effective concentration values (EC50) as SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Passage of WT MHV in the presence of the GS-5734 parent nucleoside selected two mutations in the nsp12 polymerase at residues conserved across all CoVs that conferred up to 5.6-fold resistance to GS-5734, as determined by EC50. The resistant viruses were unable to compete with WT in direct coinfection passage in the absence of GS-5734. Introduction of the MHV resistance mutations into SARS-CoV resulted in the same in vitro resistance phenotype and attenuated SARS-CoV pathogenesis in a mouse model. Finally, we demonstrate that an MHV mutant lacking ExoN proofreading was significantly more sensitive to GS-5734. Combined, the results indicate that GS-5734 interferes with the nsp12 polymerase even in the setting of intact ExoN proofreading activity and that resistance can be overcome with increased, nontoxic concentrations of GS-5734, further supporting the development of GS-5734 as a broad-spectrum therapeutic to protect against contemporary and emerging CoVs. IMPORTANCE Coronaviruses (CoVs) cause severe human infections, but there are no approved antivirals to treat these infections. Development of nucleoside-based therapeutics for CoV infections has been hampered by the presence of a proofreading exoribonuclease. Here, we expand the known efficacy of the nucleotide prodrug remdesivir (GS-5734) to include a group β-2a CoV. Further, GS-5734 potently inhibits CoVs with intact proofreading. Following selection with the GS-5734 parent nucleoside, 2 amino acid substitutions in the nsp12 polymerase at residues that are identical across CoVs provide low-level resistance to GS-5734. The resistance mutations decrease viral fitness of MHV in vitro and attenuate pathogenesis in a SARS-CoV animal model of infection. Together, these studies define the target of GS-5734 activity and demonstrate that resistance is difficult to select, only partial, and impairs fitness and virulence of MHV and SARS-CoV, supporting further development of GS-5734 as a potential effective pan-CoV antiviral

    The effector T cell response to influenza infection

    Get PDF
    Influenza virus infection induces a potent initial innate immune response, which serves to limit the extent of viral replication and virus spread. However, efficient (and eventual) viral clearance within the respiratory tract requires the subsequent activation, rapid proliferation, recruitment, and expression of effector activities by the adaptive immune system, consisting of antibody producing B cells and influenza-specific T lymphocytes with diverse functions. The ensuing effector activities of these T lymphocytes ultimately determine (along with antibodies) the capacity of the host to eliminate the viruses and the extent of tissue damage. In this review, we describe this effector T cell response to influenza virus infection. Based on information largely obtained in experimental settings (i.e., murine models), we will illustrate the factors regulating the induction of adaptive immune T cell responses to influenza, the effector activities displayed by these activated T cells, the mechanisms underlying the expression of these effector mechanisms, and the control of the activation/differentiation of these T cells, in situ, in the infected lungs

    Total synthesis of the agelastatin alkaloids

    No full text
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemistry, 2010.Vita. Cataloged from PDF version of thesis.Includes bibliographical references.I. Enantioselective Total Synthesis of (-)-Acylfulvene, and (-)-Irofulven We report the enantioselective total synthesis of (-)-acylfulvene and (-)-irofulven, which features metathesis reactions for the rapid assembly of the molecular framework of these anti tumor agents. We discuss (1) the application of an Evans Cu-catalyzed aldol addition reaction using a strained cyclopropyl ketene thioacetal, (2) an efficient enyne ring-closing metathesis cascade reaction in a challenging setting, (3) the reagent, IPNBSH, for a late stage reductive allylic transposition reaction, and (4) the final ring-closing metathesis/dehydrogenation sequence for the formation of (-)-acylfulvene and (-)-irofulven. II. Total Synthesis of the (-)-Agelastatin Alkaloids The pyrrole-imidazole super-family of marine alkaloids, derived from linear clathrodinlike precursors, constitutes a diverse array of structurally complex natural products. The bioactive agelastatins are members of this family that have a tetracyclic molecular framework incorporating C4-C8 and C7-N12 bond connectivities. We provide a hypothesis for the formation of the unique agelastatin architecture that maximally exploits the intrinsic chemistry of plausible biosynthetic precursors. We report the concise enantioselective total syntheses of the agelastatin alkaloids, including the first total syntheses of agelastatins C and E. Our gram-scale chemical synthesis of agelastatin A was inspired by our hypothesis for the biogenesis of the cyclopentane C-ring and required the development of new transformations including an imidazolone-forming annulation reaction and a carbohydroxylative trapping of imidazolones.by Dustin S. Siegel.Ph.D

    Data from: Phylogeny of mental glands, revisited

    No full text
    Mental glands and their associated delivery behaviors during courtship are unique to the plethodontid salamanders. Because previous interpretations of the evolution of these features were conducted using older phylogenetic hypotheses, we reanalyzed these traits with newer courtship descriptions and contemporary phylogenetic methods. Using Bayesian ancestral state reconstruction methods that have been developed since the first phylogenetic analyses were conducted in the mid-1990s, we reconstructed mental gland and courtship behavior evolution on a novel molecular (Rag1) topology of plethodontids. The most probable ancestral condition for plethodontids was resolved as presence of a mental gland. Loss of a mental gland occurred in each subfamily and was recovered as the most probable ancestral condition for the Spelerpinae. In contrast, parsimony reconstruction recovered the presence of a mental gland in the ancestor to Spelerpinae with multiple secondary losses. We hypothesize that that absence of a mental gland is possibly ancestral in some clades (i.e., Spelerpinae), and secondary in others (e.g., paedomorphic Eurycea). The most probable ancestral form of the mental gland is likely to be the large pad-type distributed extensively in Plethodontinae and Bolitoglossinae. Desmognathans have the most unique mental glands, occurring in an anterior protrusion or bifurcated form (in Desmognathus wright). Fan-shaped mental glands evolved independently in Eurycea and Oedipina. Small pads arose independently in Bolitoglossinae, Plethodontinae, and Spelerpinae. Head-rubbing behavior for mental gland delivery mode was recovered as the most probable and parsimonious ancestral state for the Plethodontidae, with independent losses of this behavior in Plethodontinae and Spelerpinae. Because head-rubbing was observed in outgroups, we hypothesize that head-rubbing behavior predated mental gland evolution. Pulling, snapping, slapping, and biting behaviors evolved independently in the Plethodontinae and Spelerpinae and are not homologous with head rubbing. All hypotheses of mental gland and courtship evolution invoke homoplasy
    corecore