5 research outputs found

    Data from: Habitat filtering determines the functional niche occupancy of plant communities worldwide

    No full text
    How the patterns of niche occupancy vary from species-poor to species-rich communities is a fundamental question in ecology that has a central bearing on the processes that drive patterns of biodiversity. As species richness increases, habitat filtering should constrain the expansion of total niche volume, while limiting similarity should restrict the degree of niche overlap between species. Here, by explicitly incorporating intraspecific trait variability, we investigate the relationship between functional niche occupancy and species richness at the global scale. We assembled 21 datasets worldwide, spanning tropical to temperate biomes and consisting of 313 plant communities representing different growth forms. We quantified three key niche occupancy components (the total functional volume, the functional overlap between species and the average functional volume per species) for each community, related each component to species richness, and compared each component to the null expectations. As species richness increased, communities were more functionally diverse (an increase in total functional volume), and species overlapped more within the community (an increase in functional overlap) but did not more finely divide the functional space (no decline in average functional volume). Null model analyses provided evidence for habitat filtering (smaller total functional volume than expectation), but not for limiting similarity (larger functional overlap and larger average functional volume than expectation) as a process driving the pattern of functional niche occupancy. Synthesis. Habitat filtering is a widespread process driving the pattern of functional niche occupancy across plant communities and coexisting species tend to be more functionally similar rather than more functionally specialized. Our results indicate that including intraspecific trait variability will contribute to a better understanding of the processes driving patterns of functional niche occupancy

    Data from: Habitat filtering determines the functional niche occupancy of plant communities worldwide

    No full text
    How the patterns of niche occupancy vary from species-poor to species-rich communities is a fundamental question in ecology that has a central bearing on the processes that drive patterns of biodiversity. As species richness increases, habitat filtering should constrain the expansion of total niche volume, while limiting similarity should restrict the degree of niche overlap between species. Here, by explicitly incorporating intraspecific trait variability, we investigate the relationship between functional niche occupancy and species richness at the global scale. We assembled 21 datasets worldwide, spanning tropical to temperate biomes and consisting of 313 plant communities representing different growth forms. We quantified three key niche occupancy components (the total functional volume, the functional overlap between species and the average functional volume per species) for each community, related each component to species richness, and compared each component to the null expectations. As species richness increased, communities were more functionally diverse (an increase in total functional volume), and species overlapped more within the community (an increase in functional overlap) but did not more finely divide the functional space (no decline in average functional volume). Null model analyses provided evidence for habitat filtering (smaller total functional volume than expectation), but not for limiting similarity (larger functional overlap and larger average functional volume than expectation) as a process driving the pattern of functional niche occupancy. Synthesis. Habitat filtering is a widespread process driving the pattern of functional niche occupancy across plant communities and coexisting species tend to be more functionally similar rather than more functionally specialized. Our results indicate that including intraspecific trait variability will contribute to a better understanding of the processes driving patterns of functional niche occupancy

    A global database for metacommunity ecology, integrating species, traits, environment and space

    No full text
    The use of functional information in the form of species traits plays an important role in explaining biodiversity patterns and responses to environmental changes. Although relationships between species composition, their traits, and the environment have been extensively studied on a case-by-case basis, results are variable, and it remains unclear how generalizable these relationships are across ecosystems, taxa and spatial scales. To address this gap, we collated 80 datasets from trait-based studies into a global database for metaCommunity Ecology: Species, Traits, Environment and Space; "CESTES". Each dataset includes four matrices: species community abundances or presences/absences across multiple sites, species trait information, environmental variables and spatial coordinates of the sampling sites. The CESTES database is a live database: it will be maintained and expanded in the future as new datasets become available. By its harmonized structure, and the diversity of ecosystem types, taxonomic groups, and spatial scales it covers, the CESTES database provides an important opportunity for synthetic trait-based research in community ecology
    corecore