155 research outputs found

    Multiple insecticide resistance in Aedes aegypti (Diptera: Culicidae) populations compromises the effectiveness of dengue vector control in French Guiana.

    Get PDF
    International audienceIn French Guiana, pyrethroids and organophosphates have been used for many years against Aedes aegypti. We aimed to establish both the resistance level of Ae. aegypti and the ultra low volume spray efficacy to provide mosquito control services with practical information to implement vector control and resistance management. Resistance to deltamethrin and fenitrothion was observed. In addition, the profound loss of efficacy of AquaK'othrineÂź and the moderate loss of efficacy of PaluthionÂź 500 were recorded. Fenitrothion remained the most effective candidate for spatial application in French Guiana until its removal in December 2010. Further investigation of the mechanism of resistance to deltamethrin demonstrated the involvement of mixed-function oxidases and, to a lesser extent, of carboxylesterases. However, these observations alone cannot explain the level of insecticide resistance we observed during tube and cage tests

    Mosquito magnetÂź liberty plus trap baited with octenol confirmed best candidate for Anopheles surveillance and proved promising in predicting risk of malaria transmission in French Guiana

    Get PDF
    BACKGROUND: In French Guiana, Mosquito Magnet(¼) Liberty Plus trap baited with octenol (MMoct) has been proposed for sampling Anopheles darlingi after comparison with CDC light trap and Human landing catch (HLC). However, other available lures were not tested. The current study compared MMoct and MM baited with Lurexℱ (MMlur) to HLC, and analysed entomological data from MMoct collection with malaria cases to facilitate malaria surveillance. METHODS: Two independent experiments were conducted during 2012 and 2013 in Saint-Georges town, French Guiana. The first experiment used Latin square design to compare MMoct and MMlur to HLC between 18:30 to 22:30 and 05:00 to 07:00. Parity rate was determined for An. darlingi from each sampling system. In the second experiment, a 24:00 hour collection was done for four consecutive days during the first week of each month and every four days for the rest of the month using MMoct. Portion of the 24 hour collection was dissected for parity rate. All anophelines were screened for Plasmodium infection by PCR. Data for number of malaria cases was analysed for association with density of An. darlingi. RESULTS: In the first experiment, 3,721 anopheline mosquitoes were collected over 21 nights. Of these, 95.7% was identified morphologically to five species and An. darlingi contributed 98.4%, mainly from HLC (75.1%, CI 95% [73.2-77.0]) than MMoct (14.1%, CI 95% [12.6-15.7]) and MMlur (10.8%, CI 95% [9.4-12.2]). Species richness was highest in HLC meanwhile species diversity index was greatest in MMoct. MMoct collected more parous An. darlingi than HLC (p < 0.0001) and MMlur (p = 0.0021). The second experiment amounted to 2035 females, 60.8% belonging to 10 species. Anopheles darlingi constituted 85.0% of the species and had parity rate of 52.3%. Specimens were uninfected with Plasmodium. Density of An. darlingi best correlated with malaria cases observed six weeks later (p = 0.0016; r = 0.4774). CONCLUSION: Though MMoct and MMlur performed well in sampling An. darlingi, MMoct captured more species and, therefore, would be useful for surveillance. Even if it collected mostly parous mosquitoes, MMoct proved useful in collecting entomological data required for predicting malaria emergence. It is a potential replacement for HLC

    Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans (PLoS Negl Trop Dis)

    Get PDF
    Publisher Copyright: © 2021 Moyes et al.After the publication of this article [1] the authors noticed citation errors in Table 2. The citations for item 5 listed under pyrethroids and items 2, 3, and 4 listed under temephos refer to the wrong references and these citations have been corrected in the updated Table 2 below. The citations for items 1, 3 and 4 listed under pyrethroids and item 1 listed under temephos are also incorrect and should cite references that have been omitted from the reference list. These citations have been corrected in the updated Table 2 below and the following corre-sponding references 79–82 should be added to the reference list: 79. Bariami V, Jones CM, Poupardin R, Vontas J, Ranson H. Gene amplification, ABC trans-porters and cytochrome P450s: unraveling the molecular basis of pyrethroid resistance in the dengue vector, Aedes aegypti. PLoS Negl Trop Dis. 2012;6: e1692. pmid:22720108 80. Saavedra-Rodriguez K, Suarez AF, Salas IF, Strode C, Ranson H, Hemingway J, et al. Transcription of detoxification genes after permethrin selection in the mosquito Aedes aegypti. Insect Mol Biol. 2012;21: 61–77. pmid:22032702 81. David J-P, Faucon F, Chandor-Proust A, Poupardin R, Riaz MA, Bonin A, et al. Comparative analysis of response to selection with three insecticides in the dengue mosquito Aedes aegypti using mRNA sequencing. BMC Genomics. 2014;15: 174. pmid:24593293 82. Strode C, de Melo-Santos M, Magalhaes T, Araujo A, Ayres C. Expression profile of genes during resistance reversal in a temephos selected strain of the dengue vector, Aedes aegypti. PloS One. 2012;7: e39439. pmid: 22870187.publishersversionpublishe

    Chikungunya Virus Transmission Potential by Local Aedes Mosquitoes in the Americas and Europe

    Get PDF
    Citation: Vega-Rua, A., Lourenco-de-Oliveira, R., Mousson, L., Vazeille, M., Fuchs, S., Yebakima, A., . . . Failloux, A. B. (2015). Chikungunya Virus Transmission Potential by Local Aedes Mosquitoes in the Americas and Europe. Plos Neglected Tropical Diseases, 9(5), 18. doi:10.1371/journal.pntd.0003780Background Chikungunya virus (CHIKV), mainly transmitted in urban areas by the mosquitoes Aedes aegypti and Aedes albopictus, constitutes a major public health problem. In late 2013, CHIKV emerged on Saint-Martin Island in the Caribbean and spread throughout the region reaching more than 40 countries. Thus far, Ae. aegypti mosquitoes have been implicated as the sole vector in the outbreaks, leading to the hypothesis that CHIKV spread could be limited only to regions where this mosquito species is dominant. Methodology/Principal Findings We determined the ability of local populations of Ae. aegypti and Ae. albopictus from the Americas and Europe to transmit the CHIKV strain of the Asian genotype isolated from Saint-Martin Island (CHIKV_SM) during the recent epidemic, and an East-Central-South African (ECSA) genotype CHIKV strain isolated from La Reunion Island (CHIKV_LR) as a well-characterized control virus. We also evaluated the effect of temperature on transmission of CHIKV_SM by European Ae. albopictus. We found that (i) Aedes aegypti from Saint-Martin Island transmit CHIKV_SM and CHIKV_LR with similar efficiency, (ii) Ae. aegypti from the Americas display similar transmission efficiency for CHIKV_SM, (iii) American and European populations of the alternative vector species Ae. albopictus were as competent as Ae. aegypti populations with respect to transmission of CHIKV_SM and (iv) exposure of European Ae. albopictus to low temperatures (20 degrees C) significantly reduced the transmission potential for CHIKV_SM. Conclusions/Significance CHIKV strains belonging to the ECSA genotype could also have initiated local transmission in the new world. Additionally, the ongoing CHIKV outbreak in the Americas could potentially spread throughout Ae. aegypti-and Ae. albopictus-infested regions of the Americas with possible imported cases of CHIKV to Ae. albopictus-infested regions in Europe. Colder temperatures may decrease the local transmission of CHIKV_SM by European Ae. albopictus, potentially explaining the lack of autochthonous transmission of CHIKV_SM in Europe despite the hundreds of imported CHIKV cases returning from the Caribbean.Additional Authors: de Lamballerie, X.;Failloux, A. B

    Management of insecticide resistance in the major Aedes vectors of arboviruses Advances and challenges

    Get PDF
    Background The landscape of mosquito-borne disease risk has changed dramatically in recent decades, due to the emergence and reemergence of urban transmission cycles driven by invasive Aedes aegypti and Ae. albopictus. Insecticide resistance is already widespread in the yellow fever mosquito, Ae. Aegypti; is emerging in the Asian tiger mosquito Ae. Albopictus; and is now threatening the global fight against human arboviral diseases such as dengue, yellow fever, chikungunya, and Zika. Because the panel of insecticides available for public health is limited, it is of primary importance to preserve the efficacy of existing and upcoming active ingredients. Timely implementation of insecticide resistance management (IRM) is crucial to maintain the arsenal of effective public health insecticides and sustain arbovirus vector control. Methodology and principal findings This Review is one of a series being generated by the Worldwide Insecticide resistance Network (WIN) and aims at defining the principles and concepts underlying IRM, identifying the main factors affecting the evolution of resistance, and evaluating the value of existing tools for resistance monitoring. Based on the lessons taken from resistance strategies used for other vector species and agricultural pests, we propose a framework for the implementation of IRM strategies for Aedes mosquito vectors. Conclusions and significance Although IRM should be a fixture of all vector control programs, it is currently often absent from the strategic plans to control mosquito-borne diseases, especially arboviruses. Experiences from other public health disease vectors and agricultural pests underscore the need for urgent action in implementing IRM for invasive Aedes mosquitoes. Based on a plan developed for malaria vectors, here we propose some key activities to establish a global plan for IRM in Aedes spp. Author summary Arthropod-borne viruses transmitted by Aedes aegypti and Ae. albopictus represent a major public health concern at a global scale. The insecticidal treatments exerted on both species have selected for various resistance mechanisms within wild populations. Although the impact of insecticide resistance on the efficacy of vector control operations remains broadly unknown, it is of primary importance to implement strategies for preserving the efficacy of treatments and reducing the pathogen transmission during epidemics. For this purpose, there are urgent needs for new tools for vector control and insecticide resistance monitoring to improve the management of insecticide resistance in Aedes species

    A New High-Throughput Tool to Screen Mosquito-Borne Viruses in Zika Virus Endemic/Epidemic Areas

    Get PDF
    International audienceMosquitoes are vectors of arboviruses affecting animal and human health. Arboviruses circulate primarily within an enzootic cycle and recurrent spillovers contribute to the emergence of human-adapted viruses able to initiate an urban cycle involving anthropophilic mosquitoes. The increasing volume of travel and trade offers multiple opportunities for arbovirus introduction in new regions. This scenario has been exemplified recently with the Zika pandemic. To incriminate a mosquito as vector of a pathogen, several criteria are required such as the detection of natural infections in mosquitoes. In this study, we used a high-throughput chip based on the BioMarkℱ Dynamic arrays system capable of detecting 64 arboviruses in a single experiment. A total of 17,958 mosquitoes collected in Zika-endemic/epidemic countries (Brazil, French Guiana, Guadeloupe, Suriname, Senegal, and Cambodia) were analyzed. Here we show that this new tool can detect endemic and epidemic viruses in different mosquito species in an epidemic context. Thus, this fast and low-cost method can be suggested as a novel epidemiological surveillance tool to identify circulating arboviruses

    Deltamethrin Resistance Mechanisms in Aedes aegypti Populations from Three French Overseas Territories Worldwide

    Get PDF
    BACKGROUND:Aedes aegypti is a cosmopolite mosquito, vector of arboviruses. The worldwide studies of its insecticide resistance have demonstrated a strong loss of susceptibility to pyrethroids, the major class of insecticide used for vector control. French overseas territories such as French Guiana (South America), Guadeloupe islands (Lesser Antilles) as well as New Caledonia (Pacific Ocean), have encountered such resistance. METHODOLOGY/PRINCIPAL FINDINGS:We initiated a research program on the pyrethroid resistance in French Guiana, Guadeloupe and New Caledonia. Aedes aegypti populations were tested for their deltamethrin resistance level then screened by an improved microarray developed to specifically study metabolic resistance mechanisms. Cytochrome P450 genes were implicated in conferring resistance. CYP6BB2, CYP6M11, CYP6N12, CYP9J9, CYP9J10 and CCE3 genes were upregulated in the resistant populations and were common to other populations at a regional scale. The implication of these genes in resistance phenomenon is therefore strongly suggested. Other genes from detoxification pathways were also differentially regulated. Screening for target site mutations on the voltage-gated sodium channel gene demonstrated the presence of I1016 and C1534. CONCLUSION /SIGNIFICANCE:This study highlighted the presence of a common set of differentially up-regulated detoxifying genes, mainly cytochrome P450 genes in all three populations. GUA and GUY populations shared a higher number of those genes compared to CAL. Two kdr mutations well known to be associated to pyrethroid resistance were also detected in those two populations but not in CAL. Different selective pressures and genetic backgrounds can explain such differences. These results are also compared with those obtained from other parts of the world and are discussed in the context of integrative research on vector competence

    Resuming Training in High-Level Athletes After Mild COVID-19 Infection: A Multicenter Prospective Study (ASCCOVID-19)

    Get PDF
    BACKGROUND: There is a paucity of data on cardiovascular sequelae of asymptomatic/mildly symptomatic SARS-Cov-2 infections (COVID). OBJECTIVES: The aim of this prospective study was to characterize the cardiovascular sequelae of asymptomatic/mildly symptomatic COVID-19 among high/elite-level athletes. METHODS: 950 athletes (779 professional French National Rugby League (F-NRL) players; 171 student athletes) were included. SARS-Cov-2 testing was performed at inclusion, and F-NRL athletes were intensely followed-up for incident COVID-19. Athletes underwent ECG and biomarker profiling (D-Dimer, troponin, C-reactive protein). COVID(+) athletes underwent additional exercise testing, echocardiography and cardiac magnetic resonance imaging (CMR). RESULTS: 285/950 athletes (30.0%) had mild/asymptomatic COVID-19 [79 (8.3%) at inclusion (COVID(+)(prevalent)); 206 (28.3%) during follow-up (COVID(+)(incident))]. 2.6% COVID(+) athletes had abnormal ECGs, while 0.4% had an abnormal echocardiogram. During stress testing (following 7-day rest), COVID(+) athletes had a functional capacity of 12.8 ± 2.7 METS with only stress-induced premature ventricular ectopy in 10 (4.3%). Prevalence of CMR scar was comparable between COVID(+) athletes and controls [COVID(+) vs. COVID(-); 1/102 (1.0%) vs 1/28 (3.6%)]. During 289 ± 56 days follow-up, one athlete had ventricular tachycardia, with no obvious link with a SARS-CoV-2 infection. The proportion with troponin I and CRP values above the upper-limit threshold was comparable between pre- and post-infection (5.9% vs 5.9%, and 5.6% vs 8.7%, respectively). The proportion with D-Dimer values above the upper-limit threshold increased when comparing pre- and post-infection (7.9% vs 17.3%, P = 0.01). CONCLUSION: The absence of cardiac sequelae in pauci/asymptomatic COVID(+) athletes is reassuring and argues against the need for systematic cardiac assessment prior to resumption of training (clinicaltrials.gov; NCT04936503).L'Institut de Rythmologie et modĂ©lisation Cardiaqu
    • 

    corecore