319 research outputs found
Competition of mixing and segregation in rotating cylinders
Using discrete element methods, we study numerically the dynamics of the size
segregation process of binary particle mixtures in three-dimensional rotating
drums, operated in the continuous flow regime. Particle rotations are included
and we focus on different volume filling fractions of the drum to study the
interplay between the competing phenomena of mixing and segregation. It is
found that segregation is best for a more than half-filled drum due to the
non-zero width of the fluidized layer. For different particle size ratios, it
is found that radial segregation occurs for any arbitrary small particle size
difference and the final amount of segregation shows a linear dependence on the
size ratio of the two particle species. To quantify the interplay between
segregation and mixing, we investigate the dynamics of the center of mass
positions for each particle component. Starting with initially separated
particle groups we find that no mixing of the component is necessary in order
to obtain a radially segregated core.Comment: 9 pages, 12 figures (EPIC/EEPIC & EPS, macros included), submitted to
Physics of Fluid
Magnetic resonance imaging of the neuroprotective effect of xaliproden in rats
RATIONALE AND OBJECTIVES: The neurotrophic effect of Xaliproden has been followed using sequential cerebral magnetic resonance imaging (MRI) in rats with vincristine-induced brain lesion as a model of Alzheimer disease.
METHODS: Nineteen rats received an intraseptal injection of vincristine on day 0, followed by a daily gavage with either the vehicle (Tween-20 1%) (n = 10) or Xaliproden (10 mg/kg) (n = 9). Eight sham-operated controls received a daily gavage with either the vehicle (n = 4) or Xaliproden (n = 4). Brain MR imaging was performed at 4.7 T on a Biospec 47/30 MR system before surgery then 3, 7, 10, and 14 days after surgery.
RESULTS: At day 3 following vincristine injection, an increase in MR signal intensity in the septum was observed on T2-weighted images. This increase was maximal at day 10, and remained stable until day 14. Daily treatment with Xaliproden delayed the appearance of hypersignals until day 7 and reduced by Ca. 50% the magnitude of the increase in signal intensity from day 10. No changes were observed in the hippocampus.
CONCLUSION: Quantitative MRI objectifies noninvasively the neuroprotective effect of Xaliproden on rat brain anatomy
Recommended from our members
Global Response Patterns of Major Rainfed Crops to Adaptation by Maintaining Current Growing Periods and Irrigation
Increasing temperature trends are expected to impact yields of major field crops by affecting various plant processes, such as phenology, growth, and evapotranspiration. However, future projections typically do not consider the effects of agronomic adaptation in farming practices. We use an ensemble of seven Global Gridded Crop Models to quantify the impacts and adaptation potential of field crops under increasing temperature up to 6 K, accounting for model uncertainty. We find that without adaptation, the dominant effect of temperature increase is to shorten the growing period and to reduce grain yields and production. We then test the potential of two agronomic measures to combat warming-induced yield reduction: (i) use of cultivars with adjusted phenology to regain the reference growing period duration and (ii) conversion of rainfed systems to irrigated ones in order to alleviate the negative temperature effects that are mediated by crop evapotranspiration. We find that cultivar adaptation can fully compensate global production losses up to 2 K of temperature increase, with larger potentials in continental and temperate regions. Irrigation could also compensate production losses, but its potential is highest in arid regions, where irrigation expansion would be constrained by water scarcity. Moreover, we discuss that irrigation is not a true adaptation measure but rather an intensification strategy, as it equally increases production under any temperature level. In the tropics, even when introducing both adapted cultivars and irrigation, crop production declines already at moderate warming, making adaptation particularly challenging in these areas. ©2019. The Authors
Large potential for crop production adaptation depends on available future varieties
Climate change affects global agricultural production and threatens food security. Faster phenological development of crops due to climate warming is one of the main drivers for potential future yield reductions. To counter the effect of faster maturity, adapted varieties would require more heat units to regain the previous growing period length. In this study, we investigate the effects of variety adaptation on global caloric production under four different future climate change scenarios for maize, rice, soybean, and wheat. Thereby, we empirically identify areas that could require new varieties and areas where variety adaptation could be achieved by shifting existing varieties into new regions. The study uses an ensemble of seven global gridded crop models and five CMIP6 climate models. We found that 39% (SSP5-8.5) of global cropland could require new crop varieties to avoid yield loss from climate change by the end of the century. At low levels of warming (SSP1-2.6), 85% of currently cultivated land can draw from existing varieties to shift within an agro-ecological zone for adaptation. The assumptions on available varieties for adaptation have major impacts on the effectiveness of variety adaptation, which could more than half in SSP5-8.5. The results highlight that region-specific breeding efforts are required to allow for a successful adaptation to climate change
Substantial Differences in Crop Yield Sensitivities Between Models Call for Functionality‐Based Model Evaluation
Crop models are often used to project future crop yield under climate and global change and typically show a broad range of outcomes. To understand differences in modeled responses, we analyzed modeled crop yield response types using impact response surfaces along four drivers of crop yield: carbon dioxide (C), temperature (T), water (W), and nitrogen (N). Crop yield response types help to understand differences in simulated responses per driver and their combinations rather than aggregated changes in yields as the result of simultaneous changes in various drivers. We find that models' sensitivities to the individual drivers are substantially different and often more different across models than across regions. There is some agreement across models with respect to the spatial patterns of response types but strong differences in the distribution of response types across models and their configurations suggests that models need to undergo further scrutiny. We suggest establishing standards in model evaluation based on emergent functionality not only against historical yield observations but also against dedicated experiments across different drivers to analyze emergent functional patterns of crop models
- …