312 research outputs found

    The visual microphone: Passive recovery of sound from video

    Get PDF
    When sound hits an object, it causes small vibrations of the object's surface. We show how, using only high-speed video of the object, we can extract those minute vibrations and partially recover the sound that produced them, allowing us to turn everyday objects---a glass of water, a potted plant, a box of tissues, or a bag of chips---into visual microphones. We recover sounds from high-speed footage of a variety of objects with different properties, and use both real and simulated data to examine some of the factors that affect our ability to visually recover sound. We evaluate the quality of recovered sounds using intelligibility and SNR metrics and provide input and recovered audio samples for direct comparison. We also explore how to leverage the rolling shutter in regular consumer cameras to recover audio from standard frame-rate videos, and use the spatial resolution of our method to visualize how sound-related vibrations vary over an object's surface, which we can use to recover the vibration modes of an object.Qatar Computing Research InstituteNational Science Foundation (U.S.) (CGV-1111415)National Science Foundation (U.S.). Graduate Research Fellowship (Grant 1122374)Massachusetts Institute of Technology. Department of MathematicsMicrosoft Research (PhD Fellowship

    SWI/SNF-like chromatin remodeling factor Fun30 supports point centromere function in S. cerevisiae

    Get PDF
    Budding yeast centromeres are sequence-defined point centromeres and are, unlike in many other organisms, not embedded in heterochromatin. Here we show that Fun30, a poorly understood SWI/SNF-like chromatin remodeling factor conserved in humans, promotes point centromere function through the formation of correct chromatin architecture at centromeres. Our determination of the genome-wide binding and nucleosome positioning properties of Fun30 shows that this enzyme is consistently enriched over centromeres and that a majority of CENs show Fun30-dependent changes in flanking nucleosome position and/or CEN core micrococcal nuclease accessibility. Fun30 deletion leads to defects in histone variant Htz1 occupancy genome-wide, including at and around most centromeres. FUN30 genetically interacts with CSE4, coding for the centromere-specific variant of histone H3, and counteracts the detrimental effect of transcription through centromeres on chromosome segregation and suppresses transcriptional noise over centromere CEN3. Previous work has shown a requirement for fission yeast and mammalian homologs of Fun30 in heterochromatin assembly. As centromeres in budding yeast are not embedded in heterochromatin, our findings indicate a direct role of Fun30 in centromere chromatin by promoting correct chromatin architecture

    Pattern Transfer of Sub-10 nm Features via Tin-Containing Block Copolymers

    Get PDF
    Tin-containing block copolymers were investigated as materials for nanolithographic applications. Poly(4-trimethylstannylstyrene-block-styrene) (PSnS-PS) and poly(4-trimethylstannylstyrene-block-4-methoxystyrene) (PSnS-PMOST) synthesized by reversible addition–fragmentation chain transfer polymerization form lamellar domains with periodicities ranging from 18 to 34 nm. Thin film orientation control was achieved by thermal annealing between a neutral surface treatment and a top coat. Incorporation of tin into one block facilitates pattern transfer into SiO_2 via a two-step etch process utilizing oxidative and fluorine-based etch chemistries

    The changing landscape in epilepsy imaging: Unmasking subtle and unique entities

    Get PDF
    Dramatic changes have occurred recently in the field of epilepsy, including a fundamental shift in the etiology of epileptogenic substrates found at surgery. Hippocampal sclerosis is no longer the most common etiology found at epilepsy surgery and this decrease has been associated with an increase in the incidence of focal cortical dysplasia and encephaloceles. Significant advances have been made in molecular biology and genetics underlying the basis of malformations of cortical development, and our ability to detect epileptogenic abnormalities with MR imaging has markedly improved. This article begins with a discussion of these trends and reviews imaging techniques essential for detecting of subtle epilepsy findings. Representative examples of subtle imaging findings are presented, which are often overlooked but should not be missed. These include temporal lobe encephaloceles, malformations of cortical development (and especially focal cortical dysplasia), hippocampal sclerosis, hippocampal malformation (also known as HIMAL), ulegyria, autoimmune encephalitis, and Rasmussen’s encephalitis. Recent findings on the pathophysiology and genetic underpinnings of several causes of localization-related epilepsy are incorporated. For instance, it has been recently found that focal cortical dysplasia IIb, tuberous sclerosis, hemimegalencephaly, and gangliogliomas are all the result of mutations of the mTOR pathway for cell growth

    Update on LIPID MAPS classification, nomenclature, and shorthand notation for MS-derived lipid structures

    Get PDF
    A comprehensive and standardized system to report lipid structures analyzed by mass spectrometry is essentialfor the communication and storage of lipidomics data. Herein, an update on both the LIPID MAPSclassification system and shorthand notation of lipid structures is presented for lipid categories Fatty Acyls(FA), Glycerolipids (GL), Glycerophospholipids (GP), Sphingolipids (SP), and Sterols (ST). With its majorchanges, i.e. annotation of ring double bond equivalents and number of oxygens, the updated shorthandnotation facilitates reporting of newly delineated oxygenated lipid species as well. For standardized reportingin lipidomics, the hierarchical architecture of shorthand notation reflects the diverse structural resolutionpowers provided by mass spectrometric assays. Moreover, shorthand notation is expanded beyond mammalianphyla to lipids from plant and yeast phyla. Finally, annotation of atoms is included for the use of stableisotope-labelled compounds in metabolic labelling experiments or as internal standards

    Nucleon Properties at Finite Volume: the Epsilon Prime Regime

    Get PDF
    We study the properties of the nucleon in highly asymmetric volumes where the spatial dimensions are small but the time dimension is large in comparison to the inverse pion mass. To facilitate power-counting at the level of Feynman diagrams, we introduce ϵ′\epsilon^\prime-power-counting which is a special case of Leutwyler's δ\delta-power-counting. Pion zero-modes enter the ϵ′\epsilon^\prime-counting perturbatively, in contrast to both the ϵ\epsilon- and δ\delta-power-countings, since mqVm_q V remains large. However, these modes are enhanced over those with non-zero momenta and enter at lower orders in the ϵ′\epsilon^\prime-expansion than they would in large volume chiral perturbation theory. We discuss an application of ϵ′\epsilon^\prime-counting by determining the nucleon mass, magnetic moment and axial matrix element at the first nontrivial order in the ϵ′\epsilon^\prime-expansion.Comment: 14 pages, 5 figure

    Results of the third Marine Ice Sheet Model Intercomparison Project (MISMIP+)

    Get PDF
    We present the result of the third Marine Ice Sheet Model Intercomparison Project, MISMIP+. MISMIP+ is intended to be a benchmark for ice-flow models which include fast sliding marine ice streams and floating ice shelves and in particular a treatment of viscous stress that is sufficient to model buttressing, where upstream ice flow is restrained by a downstream ice shelf. A set of idealized experiments first tests that models are able to maintain a steady state with the grounding line located on a retrograde slope due to buttressing and then explore scenarios where a reduction in that buttressing causes ice stream acceleration, thinning, and grounding line retreat. The majority of participating models passed the first test and then produced similar responses to the loss of buttressing. We find that the most important distinction between models in this particular type of simulation is in the treatment of sliding at the bed, with other distinctions – notably the difference between the simpler and more complete treatments of englacial stress but also the differences between numerical methods – taking a secondary role
    • …
    corecore