324 research outputs found

    Signature of survival: a <sup>18</sup>F-FDG PET based whole-liver radiomic analysis predicts survival after <sup>90</sup>Y-TARE for hepatocellular carcinoma.

    Get PDF
    To generate a predictive whole-liver radiomics scoring system for progression-free survival (PFS) and overall survival (OS) in patients undergoing transarterial radioembolization using Yttrium-90 ( &lt;sup&gt;90&lt;/sup&gt; Y-TARE) for unresectable hepatocellular carcinoma (uHCC). The generated pPET-RadScores were significantly correlated with survival for PFS (median of 11.4 mo [95% confidence interval CI: 6.3-16.5 mo] in low-risk group [PFS-pPET-RadScore &lt; 0.09] vs. 4.0 mo [95% CI: 2.3-5.7 mo] in high-risk group [PFS-pPET-RadScore &gt; 0.09]; &lt;i&gt;P&lt;/i&gt; = 0.0004) and OS (median of 20.3 mo [95% CI: 5.7-35 mo] in low-risk group [OS-pPET-RadScore &lt; 0.11] vs. 7.7 mo [95% CI: 6.0-9.5 mo] in high-risk group [OS-pPET-RadScore &gt; 0.11]; &lt;i&gt;P&lt;/i&gt; = 0.007). The multivariate analysis confirmed PFS-pPET-RadScore ( &lt;i&gt;P&lt;/i&gt; = 0.006) and OS-pPET-RadScore ( &lt;i&gt;P&lt;/i&gt; = 0.001) as independent negative predictors. Pretreatment &lt;sup&gt;18&lt;/sup&gt; F-FDG PET whole-liver radiomics signature appears as an independent negative predictor for PFS and OS in patients undergoing &lt;sup&gt;90&lt;/sup&gt; Y-TARE for uHCC. Pretreatment &lt;sup&gt;18&lt;/sup&gt; F-FDG PET of 47 consecutive patients undergoing &lt;sup&gt;90&lt;/sup&gt; Y-TARE for uHCC (31 resin spheres, 16 glass spheres) were retrospectively analyzed. For each patient, based on PET radiomics signature from whole-liver semi-automatic segmentation, PFS and OS predictive PET-radiomics scores (pPET-RadScores) were obtained using LASSO Cox regression. Using X-tile software, the optimal score to predict PFS (PFS-pPET-RadScore) and OS (OS-pPET-RadScore) served as cutoff to separate high and low-risk patients. Survival curves were estimated using the Kaplan-Meier method. The prognostic value of PFS and OS-pPET-RadScore, Barcelona-Clinic Liver Cancer staging system and serum alpha-fetoprotein level was analyzed to predict PFS and OS in multivariate analysis

    Use of ecotoxicity test and ecoscores to improve the management of polluted soils: case of a secondary lead smelter plant

    Get PDF
    International audienceWith the rise of sustainable development, rehabilitation of brownfield sites located in urban areas has become a major concern. Management of contaminated soils in relation with environmental and sanitary risk concerns is therefore a strong aim needing the development of both useful tools for risk assessment and sustainable remediation techniques. For soils polluted by metals and metalloids (MTE), the criteria for landfilling are currently not based on ecotoxicological tests but on total MTE concentrations and leaching tests. In this study, the ecotoxicity of leachates from MTE polluted soils sampled from an industrial site recycling lead-acid batteries were evaluated by using both modified Escherichia coli strains with luminescence modulated by metals and normalized Daphnia magna and Alivibrio fischeri bioassays. The results were clearly related to the type of microorganisms (crustacean, different strains of bacteria) whose sensitivity varied. Ecotoxicity was also different according to sample location on the site, total concentrations and physico-chemical properties of each soil. For comparison, standard leaching tests were also performed. Potentially phytoavailable fraction of MTE in soils and physico-chemical measures were finally performed in order to highlight the mechanisms. The results demonstrated that the use of a panel of microorganisms is suitable for hazard classification of polluted soils. In addition, calculated eco-scores permit to rank the polluted soils according to their potentially of dangerousness. Influence of soil and MTE characteristics on MTE mobility and ecotoxicity was also highlighted

    Prediction Of Beef Fatty Acid Composition Using Near Infrared Spectroscopy: Effects Of Tissue And Sample Preparations

    No full text
    International audienceThe aims of the study were to determine the best site of bovine carcass for predicting fatty acid (FA) composition using a NIRS (near infrared spectroscopy) portable equipment and to study the effect of different methods of sample preparation. 78 animals were sampled from different types and rearing systems. Seven tissues (Longissimus thoracis, Infraspinatus, Diaphragma, Rectus abdominis, shoulder subcutaneous adipose tissue (SAT), intercostal SAT and intermuscular fat at the 5th rib) were measured after sampling and grinding in liquid nitrogen. The effect of samples preparation were measured on carcass (C0), muscle without grinding (B0), ground with a meat chopper (B1), ground with a knife mill (B2) on RA muscle. FA composition was assessed using gas chromatograph and the spectra were measured at wavelengths between 350 and 2500 nm. For adipose tissue, FA were not correctly predicted from NIRS. However, predictions were more satisfactory for the major FA (C16:0, C18:0, C18:1d9c), total saturated and monounsaturated FA of muscles. The results show a better prediction of FA composition concomitant with an increased gradient of sample homogenization. For other FA and especially polyunsaturated fatty acids, the performances were not satisfactory for quantitative purposes whatever the grinding method

    The Extraction of 3D Shape from Texture and Shading in the Human Brain

    Get PDF
    We used functional magnetic resonance imaging to investigate the human cortical areas involved in processing 3-dimensional (3D) shape from texture (SfT) and shading. The stimuli included monocular images of randomly shaped 3D surfaces and a wide variety of 2-dimensional (2D) controls. The results of both passive and active experiments reveal that the extraction of 3D SfT involves the bilateral caudal inferior temporal gyrus (caudal ITG), lateral occipital sulcus (LOS) and several bilateral sites along the intraparietal sulcus. These areas are largely consistent with those involved in the processing of 3D shape from motion and stereo. The experiments also demonstrate, however, that the analysis of 3D shape from shading is primarily restricted to the caudal ITG areas. Additional results from psychophysical experiments reveal that this difference in neuronal substrate cannot be explained by a difference in strength between the 2 cues. These results underscore the importance of the posterior part of the lateral occipital complex for the extraction of visual 3D shape information from all depth cues, and they suggest strongly that the importance of shading is diminished relative to other cues for the analysis of 3D shape in parietal regions

    The pathophysiology of restricted repetitive behavior

    Get PDF
    Restricted, repetitive behaviors (RRBs) are heterogeneous ranging from stereotypic body movements to rituals to restricted interests. RRBs are most strongly associated with autism but occur in a number of other clinical disorders as well as in typical development. There does not seem to be a category of RRB that is unique or specific to autism and RRB does not seem to be robustly correlated with specific cognitive, sensory or motor abnormalities in autism. Despite its clinical significance, little is known about the pathophysiology of RRB. Both clinical and animal models studies link repetitive behaviors to genetic mutations and a number of specific genetic syndromes have RRBs as part of the clinical phenotype. Genetic risk factors may interact with experiential factors resulting in the extremes in repetitive behavior phenotypic expression that characterize autism. Few studies of individuals with autism have correlated MRI findings and RRBs and no attempt has been made to associate RRB and post-mortem tissue findings. Available clinical and animal models data indicate functional and structural alterations in cortical-basal ganglia circuitry in the expression of RRB, however. Our own studies point to reduced activity of the indirect basal ganglia pathway being associated with high levels of repetitive behavior in an animal model. These findings, if generalizable, suggest specific therapeutic targets. These, and perhaps other, perturbations to cortical basal ganglia circuitry are mediated by specific molecular mechanisms (e.g., altered gene expression) that result in long-term, experience-dependent neuroadaptations that initiate and maintain repetitive behavior. A great deal more research is needed to uncover such mechanisms. Work in areas such as substance abuse, OCD, Tourette syndrome, Parkinson’s disease, and dementias promise to provide findings critical for identifying neurobiological mechanisms relevant to RRB in autism. Moreover, basic research in areas such as birdsong, habit formation, and procedural learning may provide additional, much needed clues. Understanding the pathophysioloy of repetitive behavior will be critical to identifying novel therapeutic targets and strategies for individuals with autism

    Qualité nutritionnelle des viandes et santé animale

    No full text
    National audienc
    corecore