2,941 research outputs found
The structures and the role of an international agency for the control of satellites
Legal questions involved in the liability of a proposed agency which would control internationally owned satellites for monitoring worldwide compliance with arms control agreements are discussed. Difficulties in acquiring the signed consent of all the relevant nations, and guaranteeing satisfactory compliance with the terms of such an agreement are noted. Additional problems to be solved comprise the construction of the ground based facilities and the satellites, the funding for the venture, and the reconciliation of the functions of the proposed agency with the sovereignty of individual states. The agency would gather, treat, and format data for signatories of arms control agreements and provide technical assistance in crisis conditions. It is concluded that the existence and functioning of the agency would reduce the amount of classified information and would consequently reduce the level of international tensions
Finite-Temperature Quasicontinuum: Molecular Dynamics without All the Atoms
Using a combination of statistical mechanics and finite-element interpolation, we develop a coarse-grained (CG) alternative to molecular dynamics (MD) for crystalline solids at constant temperature. The new approach is significantly more efficient than MD and generalizes earlier work on the quasicontinuum method. The method is validated by recovering equilibrium properties of single crystal Ni as a function of temperature. CG dynamical simulations of nanoindentation reveal a strong dependence on temperature of the critical stress to nucleate dislocations under the indenter
Effets de la guerre civile au centre-Mozambique et Ă©valuation d'une intervention de la Croix Rouge
Afin de mesurer l'évolution de la mortalité avant, pendant et après la guerre civile, une enquête a été conduite dans le district de Maringué, au Mozambique, en octobre 1994. L'enquête a porté sur les histoires des maternités de 1503 femmes de 15 à 60 ans. Les résultats de l'analyse révèlent une évolution complexe de la mortalité des enfants. Au cours de la fin de la période coloniale, la mortalité des moins de 5 ans baisse de 373 pour mille (1955-1959) à 270 pour mille (1970-1974). Puis elle passe par une période de stagnation entre 1975 et 1979. A partir de 1980, début de la guerre civile, la mortalité augmente rapidement pour atteindre un pic de 473 pour mille en 1986, à un niveau près du double de l'étiage des annnées 1965-1969. Puis la mortalité baisse à nouveau pour atteindre un plateau en 1990-1991 (380 pou mille). Ce sont surtout les maladies infectieuses et parasitaires, principales causes de décès dans la population, qui expliquent l'augmentation pendant la période de crise, les morts violentes ne représentant que moins de 1% du total. Une intervention conduite par la Croix Rouge depuis la fin de l'année 1991 a permis de réduire la mortalité à 269 pour mille en 1994. La baisse récente de la mortalité s'explique essentiellement par la diminution de quatre causes de décès seulement : la rougeole, la diarrhée, le tétanos et la malnutrition. Ces maladies étaient les principales cibles du programme d'intervention de la Croix Rouge, qui portaient notamment sur les vaccinations et sur la supplémentation en vitame "A". (Résumé d'auteur
Contamination nitratée des eaux souterraines d'un bassin versant agricole hétérogène 2. Évolution des concentrations dans la nappe
L'usage quasi systématique de fertilisants sur de grandes surfaces a conduit la majorité des aquifères superficiels à un grave niveau de contamination par les nitrates. Des essais de gestion environnementale de cette problématique agricole sont conduits à l'échelle du bassin versant afin d'estimer les flux de nitrates percolant vers la nappe. La présente étude reprend les résultats issus de la modélisation d'un bassin versant dans le but d'appréhender l'évolution de la concentration en nitrates dans les eaux de la nappe. L'importance des conditions hydrogéologiques dans les relations entre zones non saturée et saturée a été mise en évidence par la comparaison des concentrations calculées dans la zone non saturée et observées dans la nappe. En règle générale, les concentrations sont très semblables pour les zones proches des limites amont du bassin, et se différencient de plus en plus vers l'aval du système. Une dilution semble se produire entre les flux percolant des différentes zones non saturées et les flux d'eau et de nitrates s'écoulant dans l'aquifère. Afin de tester cette hypothèse, un modèle de dilution basé sur les flux d'eau et de nitrates dans les zones non saturée et saturée est développé. Appliqué sur l'axe d'écoulement principal du système, le modèle de dilution permet de reproduire adéquatement les concentrations observées dans la nappe à partir de celles calculées dans le sol avec une erreur maximale variant de 1 à 22%. Le couplage d'un modèle environnemental pour la zone racinaire du sol avec un modèle de dilution simple peut permettre le calcul des concentrations en nitrates dans la zone saturée. Toutefois, la prise en compte des conditions hydrogéologiques du système est nécessaire à un calcul de dilution efficace basé sur les valeurs des flux de percolation.Pesticides and nitrates represent the main sources of aquifer contamination in agricultural zones. In many regions, nitrate concentration levels reach and exceed the water quality criteria (50 mg NO3/L). The increasing use of mineral fertilizers (which has doubled during the 20 last years) and the intensive exploitation of the aquifers for crop irrigation (1,1 million ha in France) have led to groundwater contamination by nitrates. The dynamics (long-term persistence) and extensiveness (regional contamination) of this contamination make it a sensitive environmental issue. Comprehensive environmental management is needed in order to limit the increase of the concentration levels and to reduce the extent of the contaminated areas. During the last few years, research has been done in the field of watershed management, from laboratory experiments to field investigations. At the same time, numerous simulation models have been developed at different investigation scales. Banton et al. (1993) developed a model specifically devoted to environmental management. Their model, AgriFlux, is based on a mechanistic approach to the processes, using a stochastic method that takes into account the spatial variability of the parameters. AgriFlux calculates the nitrate concentrations as well as the water fluxes in the unsaturated zone. The concentrations in the unsaturated zone (obtained by modeling or measurement) are generally dissimilar to those observed in the saturated zone (i.e. in the aquifer) because the infiltration water is diluted in the aquifer water. This difference indicates that the concentrations in the unsaturated zone cannot be used to accurately evaluate the actual risk of groundwater contamination. Hydrogeological conditions such as the recharge limits, the flow direction and the flow rate should be incorporated into the evaluation. In this paper, the modeling results obtained previously (Dupuy et al., 1997) with AgriFlux for the La Jannerie watershed are used to determine the concentrations in the aquifer and to compare them with the concentrations measured in the observation wells. This watershed (160 ha) is used exclusively for agriculture. The fractured carbonate strata (Superior Oxfordian) constitute a phreatic aquifer with a vertical extension of about 20 m. First, the temporal evolution of the annual mean concentrations in the aquifer is compared with the evolution of the annual precipitation. The results show that the mean concentrations tend to follow precipitation levels. However, the differences observed at different locations in the watershed cannot be explained by these results. The spatial evolution of the concentrations from the upstream to the downstream part of the aquifer was studied in order to explain the concentration distribution in the watershed. On the main flow line, the concentrations observed from 1985 to 1989 show a decrease from the P7 well (upstream) to the P26 well (downstream). This phenomenon can be attributed to two factors. First, denitrification may occur in the aquifer during flow. However, it is recognized in literature that the denitrification rate is usually low and a long period of time is required to obtain a significant decrease in the nitrate level. The observed attenuation cannot be imputed to this factor alone. The second possible cause is related to the dilution of the nitrates in the water contained in the aquifer.In order to test this hypothesis, a dilution model was elaborated using the watershed division as indicated in Dupuy et al. (1997). In each area, the resulting concentration is obtained by diluting the fluxes of water and nitrate leaching in the unsaturated zone in the fluxes of water and nitrates flowing from the upstream area. The concentrations in the aquifer are calculated from upstream areas to downstream areas for the period between 1985 and 1989. The pattern of the concentration curves obtained in this manner agrees with the trend measured in the different wells. The results clearly show a decrease of the concentration in the aquifer water leached from the unsaturated zone. For the downstream area (well P26), the calculated concentrations are higher than the observed ones. This difference could be due to the fact that the lateral fluxes (flow convergence into the median part) are not taken into account and the concentrations may thus be overestimated. However, the mean resulting error (12%) remains low considering the lack of knowledge of the aquifer characteristics. It is therefore possible to accurately estimate the nitrate concentrations in the saturated zone from the concentrations simulated in the unsaturated zone using a simple dilution model. However, this method is only valid for simple hydrogeological conditions
Cn to ccn relationships and cloud microphysical properties in different air masses at a free tropospheric site
International audienceThe fraction of aerosol particles activated to droplets (CCN) is often derived from semi-empirical relationships that commonly tend to overestimate droplet number concentration leading to major uncertainties in global climate models. One of the difficulties in relating aerosol concentration to cloud microphysics and cloud albedo lies in the necessity of working at a constant liquid water path (LWP), which is very difficult to control. In this study we observed the relationships between aerosol number concentration (NCN), cloud droplet concentration (Nd) and effective radius (Reff), at the Puy de Dôme (France). A total of 20 cloud events were sampled representing a period of more than 250 h of cloud sampling. Samples are classified first according to air mass origins (Modified Marine, Continental and Polluted) and then according to their liquid water content (Thin, Medium and Thick clouds). The CCN fraction of aerosols appears to vary significantly according to the air mass origin. It is maximum for Continental air masses and minimum for Polluted air masses. Surprisingly, the CCN fraction of Modified Marine air masses fraction is lower than the continental air mass and from expected from previous studies. The limited number of activated particles in Modified Marine air masses is most likely the result of the presence of hydrophobic organic compounds. The limited activation effect leads to a 0.5 to 1 µm increase in Reff with respect to an ideal Marine case. This is significant and implies that the dReff/dNCN of low-continental clouds is higher than expected
Orbital Parameter Determination for Wide Stellar Binary Systems in the Age of Gaia
The orbits of binary stars and planets, particularly eccentricities and
inclinations, encode the angular momentum within these systems. Within stellar
multiple systems, the magnitude and (mis)alignment of angular momentum vectors
among stars, disks, and planets probes the complex dynamical processes guiding
their formation and evolution. The accuracy of the \textit{Gaia} catalog can be
exploited to enable comparison of binary orbits with known planet or disk
inclinations without costly long-term astrometric campaigns. We show that
\textit{Gaia} astrometry can place meaningful limits on orbital elements in
cases with reliable astrometry, and discuss metrics for assessing the
reliability of \textit{Gaia} DR2 solutions for orbit fitting. We demonstrate
our method by determining orbital elements for three systems (DS Tuc AB, GK/GI
Tau, and Kepler-25/KOI-1803) using \textit{Gaia} astrometry alone. We show that
DS Tuc AB's orbit is nearly aligned with the orbit of DS Tuc Ab, GK/GI Tau's
orbit might be misaligned with their respective protoplanetary disks, and the
Kepler-25/KOI-1803 orbit is not aligned with either component's transiting
planetary system. We also demonstrate cases where \textit{Gaia} astrometry
alone fails to provide useful constraints on orbital elements. To enable
broader application of this technique, we introduce the python tool
\texttt{lofti\_gaiaDR2} to allow users to easily determine orbital element
posteriors.Comment: 18 pages, 10 figures, accepted for publication in Ap
Trends in recovery of mediterranean soil chemical properties and microbial activities after infrequent and frequent wildfires
Since the 1970s, increase in fire frequency has been observed in all European Mediterranean regions. The objectives of this study were (1) to determine the effects of wildfire frequency on the recovery at short- and long-term of soil chemical and microbial properties and (2) to identify the mechanisms underlying the recovery of these sites properties. Soils from 17 plots (Maures mountains range, Var, France) were classified into 5 wildfire regimes (i.e. not burned since at least 57 years ago, infrequently and frequently burned-with time since fire between 4 and 17 years). Soil samples from these plots were analysed for their nutrient content, chemical functions of soil organic matter (SOM) using FT-MIR spectroscopy and microbial mineralising activities. Our results showed that the frequent wildfire regime slowed down the recovery in the short term of SOM spectroscopic properties and nutrient availability. Both low quantity and low quality (i.e. high percentage of aromatic and phenolic organic forms) of soil organic matter were found to be related to soil microbial recovery at 4 years after frequent wildfires. The frequent wildfires improved the recovery in net nitrification and nitrate content, leading to an increase in catabolic evenness and a recovery in microbial C-substrate utilisation profiles between 4 and 17 years. However, frequent wildfires slowed down the recovery of hydrolytic enzyme pool (i.e. FDA hydrolases) and phenol oxidase activity, both involved in soil C cycling. Overall, our observations suggest that 4 fires in 50 years is a threshold beyond which soil quality may be endangered
M3Fusion: A Deep Learning Architecture for Multi-{Scale/Modal/Temporal} satellite data fusion
Modern Earth Observation systems provide sensing data at different temporal
and spatial resolutions. Among optical sensors, today the Sentinel-2 program
supplies high-resolution temporal (every 5 days) and high spatial resolution
(10m) images that can be useful to monitor land cover dynamics. On the other
hand, Very High Spatial Resolution images (VHSR) are still an essential tool to
figure out land cover mapping characterized by fine spatial patterns.
Understand how to efficiently leverage these complementary sources of
information together to deal with land cover mapping is still challenging. With
the aim to tackle land cover mapping through the fusion of multi-temporal High
Spatial Resolution and Very High Spatial Resolution satellite images, we
propose an End-to-End Deep Learning framework, named M3Fusion, able to leverage
simultaneously the temporal knowledge contained in time series data as well as
the fine spatial information available in VHSR information. Experiments carried
out on the Reunion Island study area asses the quality of our proposal
considering both quantitative and qualitative aspects
Core level photoelectron spectroscopy of heterogeneous reactions at liquid-vapor interfaces: Current status, challenges, and prospects
Liquid–vapor interfaces, particularly those between aqueous solutions and air, drive numerous important chemical and physical processes in the atmosphere and in the environment. X-ray photoelectron spectroscopy is an excellent method for the investigation of these interfaces due to its surface sensitivity, elemental and chemical specificity, and the possibility to obtain information on the depth distribution of solute and solvent species in the interfacial region. In this Perspective, we review the progress that was made in this field over the past decades and discuss the challenges that need to be overcome for investigations of heterogeneous reactions at liquid–vapor interfaces under close-torealistic environmental conditions. We close with an outlook on where some of the most exciting and promising developments might lie in this fiel
- …