129 research outputs found

    The effect of irregular breathing patterns on internal target volumes in four-dimensional CT and cone-beam CT images in the context of stereotactic lung radiotherapy

    Get PDF
    Purpose: Stereotactic lung radiotherapy is complicated by tumor motion from patient respiration. Four-dimensional CT (4DCT) imaging is a motion compensation method used in treatment planning to generate a maximum intensity projection (MIP) internal target volume (ITV). Image guided radiotherapy during treatment may involve acquiring a volumetric cone-beam CT (CBCT) image and visually aligning the tumor to the planning 4DCT MIP ITV contour. Moving targets imaged with CBCT can appear blurred and currently there are no studies reporting on the effect that irregular breathing patterns have on CBCT volumes and their alignment to 4DCT MIP ITV contours. The objective of this work was therefore to image a phantom moving with irregular breathing patterns to determine whether any configurations resulted in errors in volume contouring or alignment. Methods: A Perspex thorax phantom was used to simulate a patient. Three wooden "lung" inserts with embedded Perspex "lesions" were moved up to 4 cm with computer-generated motion patterns, and up to 1 cm with patient-specific breathing patterns. The phantom was imaged on 4DCT and CBCT with the same acquisition settings used for stereotactic lung patients in the clinic and the volumes on all phantom images were contoured. This project assessed the volumes for qualitative and quantitative changes including volume, length of the volume, and errors in alignment between CBCT volumes and 4DCT MIP ITV contours

    Exogenous Nitric Oxide and Bubble Formation in Divers

    Get PDF
    . Purpose: Prevention of bubble formation is a central goal in standard decompression procedures. Previously we have shown that exercise 20 Y 24 h prior to a dive reduces bubble formation and increases survival in rats exposed to a simulated dive. Furthermore, we have demonstrated that nitric oxide (NO) may be involved in this protection; blocking the production of NO increases bubble formation while giving rats a long-lasting NO donor 20 h and immediately prior to a dive reduces bubble formation. This study determined whether a short-lasting NO donor, nitroglycerine, reduced bubble formation after standard dives and decompression in man. Methods: A total of 16 experienced divers were randomly assigned into two groups. One group performed two dives to 30 m of seawater (msw) for 30 min breathing air, and performed exercise at an intensity corresponding to 30% of maximal oxygen uptake during the bottom time. The second group performed two simulated dives to 18 msw for 80 min breathing air in a hyperbaric chamber, and remained sedentary during the bottom period. The first dive for each diver served as the control dive, whereas the divers received 0.4 mg of nitroglycerine by oral spray 30 min before the second dive. Following the dive, gas bubbles in the pulmonary artery were recorded using ultrasound. Results: The open-water dive resulted in significantly more gas bubbles than the dry dive (0.87 T 1.3 vs 0.12 T 0.23 bubbles per square centimeter). Nitroglycerine reduced bubble formation significantly in both dives from 0.87 T 1.3 to 0.32 T 0.7 in the in-water dive and from 0.12 T 0.23 to 0.03 T 0.03 bubbles per square centimeter in the chamber dive. Conclusion: The present study demonstrates that intake of a short-lasting NO donor reduces bubble formation following decompression after different dives

    Thermoplastic elastomer with advanced hydrophilization and bonding performances for rapid (30 s) and easy molding of microfluidic devices

    Get PDF
    One of the most important area of research in microfluidic technologies focuses on the identification and characterisation of novel materials with enhanced properties and versatility. Here we present a fast, easy and inexpensive microstructuration method for the fabrication of novel, flexible, transparent and biocompatible microfluidic devices. Using a simple hot-press, we demonstrate the rapid (30s) production of various microfluidic prototypes embossed in a commercially-available soft thermoplastic elastomer (sTPE). This styrenic block copolymer (BCP) material is as flexible as PDMS and as thermoformable as classical thermoplastics. It exhibits high fidelity in replication using SU–8 and epoxy master molds in a highly convenient low-isobar (0.4 bar) and iso-thermal process. Microfluidic devices can then be easily sealed using either a simple hot plate or even room-temperature assembly, allowing them so sustain liquid pressure of 2 and 0.6 bars respectively. The excellent sorption and biocompatibility properties of the microchips were validated via a standard rhodamine dye assay as well as a sensitive yeast cell-based assay. The morphology and composition of the surface area after plasma treatment for hydrophilization purposes are stable and show constant and homogenous distribution of the block nanodomains (∌ 22° after 4 days). These domains, which are evenly distributed at the nanoscale, therefore account for a uniform and convenient surface at a “microfluidic scale device”. To our knowledge, this is the first thermoplastic elastomer material that can be used for fast and reliable fabrication and assembly of microdevices while maintaining a high and stable hydrophilicity

    Neurons are MHC Class I-Dependent Targets for CD8 T Cells upon Neurotropic Viral Infection

    Get PDF
    Following infection of the central nervous system (CNS), the immune system is faced with the challenge of eliminating the pathogen without causing significant damage to neurons, which have limited capacities of renewal. In particular, it was thought that neurons were protected from direct attack by cytotoxic T lymphocytes (CTL) because they do not express major histocompatibility class I (MHC I) molecules, at least at steady state. To date, most of our current knowledge on the specifics of neuron-CTL interaction is based on studies artificially inducing MHC I expression on neurons, loading them with exogenous peptide and applying CTL clones or lines often differentiated in culture. Thus, much remains to be uncovered regarding the modalities of the interaction between infected neurons and antiviral CD8 T cells in the course of a natural disease. Here, we used the model of neuroinflammation caused by neurotropic Borna disease virus (BDV), in which virus-specific CTL have been demonstrated as the main immune effectors triggering disease. We tested the pathogenic properties of brain-isolated CD8 T cells against pure neuronal cultures infected with BDV. We observed that BDV infection of cortical neurons triggered a significant up regulation of MHC I molecules, rendering them susceptible to recognition by antiviral CTL, freshly isolated from the brains of acutely infected rats. Using real-time imaging, we analyzed the spatio-temporal relationships between neurons and CTL. Brain-isolated CTL exhibited a reduced mobility and established stable contacts with BDV-infected neurons, in an antigen- and MHC-dependent manner. This interaction induced rapid morphological changes of the neurons, without immediate killing or impairment of electrical activity. Early signs of neuronal apoptosis were detected only hours after this initial contact. Thus, our results show that infected neurons can be recognized efficiently by brain-isolated antiviral CD8 T cells and uncover the unusual modalities of CTL-induced neuronal damage

    Solid-state host–guest influences on a BODIPY dye hosted within a crystalline sponge

    Get PDF
    Manipulating the emission characteristics of phosphors is a viable strategy to produce unique, and thus difficult to replicate, security optical features that are useful in anticounterfeiting applications. Here, a fluorophore, BODIPY 493/503, displayed altered solid-state emission characteristics upon being hosted within a crystalline molecular flask. Specifically, a bathochromic shift of 939 cm−1 was observed (λ(max): 633 → 673 nm), with a concomitant reduction in emission intensity, and emission dependency on excitation wavelength. Multiple factors likely contribute to this behaviour, such as emission filtering by the host framework, exciplex formation between BODIPY and the electron-deficient framework, and collisional quenching between the host and guest. Here we prioritize solid-state analyses to explore these factors, including electron density mapping of the framework pores, and multinuclear solid-state NMR spectroscopy

    CRMP5 Regulates Generation and Survival of Newborn Neurons in Olfactory and Hippocampal Neurogenic Areas of the Adult Mouse Brain

    Get PDF
    The Collapsin Response Mediator Proteins (CRMPs) are highly expressed in the developing brain, and in adult brain areas that retain neurogenesis, ie: the olfactory bulb (OB) and the dentate gyrus (DG). During brain development, CRMPs are essentially involved in signaling of axon guidance and neurite outgrowth, but their functions in the adult brain remain largely unknown. CRMP5 has been initially identified as the target of auto-antibodies involved in paraneoplasic neurological diseases and further implicated in a neurite outgrowth inhibition mediated by tubulin binding. Interestingly, CRMP5 is also highly expressed in adult brain neurogenic areas where its functions have not yet been elucidated. Here we observed in both neurogenic areas of the adult mouse brain that CRMP5 was present in proliferating and post-mitotic neuroblasts, while they migrate and differentiate into mature neurons. In CRMP5−/− mice, the lack of CRMP5 resulted in a significant increase of proliferation and neurogenesis, but also in an excess of apoptotic death of granule cells in the OB and DG. These findings provide the first evidence that CRMP5 is involved in the generation and survival of newly generated neurons in areas of the adult brain with a high level of activity-dependent neuronal plasticity

    Development and validation of a questionnaire assessing volitional competencies to enhance the performance of physical activities in chronic low back pain patients

    Get PDF
    BACKGROUND: Motivation has long been emphasized as the most important determinant of action. However, there is a substantial gap between people's goals and their attainment. Patients may be motivated and yet unable to take action if their volitional competencies are insufficient. One of the important tasks of volition is goal-maintenance. Research has stressed the importance of a volitional tool, the implementation intentions. Implementation intentions indicate where, when, and how the action leading to the goal will be performed. Forming implementation intentions favours the execution of goal-directed efforts, and reinforces the relationship between intentions and behaviours. Results from various studies clearly suggest that volitional competencies and implementation intentions could play a role in low back pain (LBP) patients. However, there is at present no questionnaire allowing assessing the capacity of implementation intentions of physical activities in LBP patients. METHODS/DESIGN: This study will develop such a questionnaire, using a 3-step approach. A first qualitative step to build categories and generate items; 30 patients suffering chronic LBP will be invited to participate in semi-structured interviews; verbatim and derived items will then be submitted to a panel of experts, using a Delphi method; a second quantitative step to examine the properties of items, and determine the factorial structure of the questionnaire; 100 patients suffering chronic LBP will be recruited to respond to this phase; and third, preliminary psychometric analyses (item-scale correlations, construct validity, reliability); 180 chronic LBP patients will be recruited for this phase of the study. The relationships between implementation intentions and variables affecting physical activity on chronic LBP patients, i.e. pain, physical capacities, fear-avoidance beliefs, kinesiophobia, work status, and level of physical activity will be considered. DISCUSSION: Developing a questionnaire to assess implementation intentions would allow investigating the role of these intentions in the transition from acute to chronic LBP. The results of this study should contribute to the understanding of the psychological processes at stake in the development of chronic LBP, and in particular to the identification of factors eventually favouring patients' participation in and adherence to active physical treatments

    Long-Range Enhancer Associated with Chromatin Looping Allows AP-1 Regulation of the Peptidylarginine Deiminase 3 Gene in Differentiated Keratinocyte

    Get PDF
    Transcription control at a distance is a critical mechanism, particularly for contiguous genes. The peptidylarginine deiminases (PADs) catalyse the conversion of protein-bound arginine into citrulline (deimination), a critical reaction in the pathophysiology of multiple sclerosis, Alzheimer's disease and rheumatoid arthritis, and in the metabolism of the major epidermal barrier protein filaggrin, a strong predisposing factor for atopic dermatitis. PADs are encoded by 5 clustered PADI genes (1p35-6). Unclear are the mechanisms controlling the expression of the gene PADI3 encoding the PAD3 isoform, a strong candidate for the deimination of filaggrin in the terminally differentiating epidermal keratinocyte. We describe the first PAD Intergenic Enhancer (PIE), an evolutionary conserved non coding segment located 86-kb from the PADI3 promoter. PIE is a strong enhancer of the PADI3 promoter in Ca2+-differentiated epidermal keratinocytes, and requires bound AP-1 factors, namely c-Jun and c-Fos. As compared to proliferative keratinocytes, calcium stimulation specifically associates with increased local DNase I hypersensitivity around PIE, and increased physical proximity of PIE and PADI3 as assessed by Chromosome Conformation Capture. The specific AP-1 inhibitor nordihydroguaiaretic acid suppresses the calcium-induced increase of PADI3 mRNA levels in keratinocytes. Our findings pave the way to the exploration of deimination control during tumorigenesis and wound healing, two conditions for which AP-1 factors are critical, and disclose that long-range transcription control has a role in the regulation of the gene PADI3. Since invalidation of distant regulators causes a variety of human diseases, PIE results to be a plausible candidate in association studies on deimination-related disorders or atopic disease

    Fragility of epidermis and its consequence in dermatology

    Get PDF
    The skin is the largest organ of the body, providing a protective barrier against bacteria, chemicals and physical insults while maintaining homeostasis in the internal environment. Such a barrier function the skin ensures protection against excessive water loss. The skin's immune defence consists of several facets, including immediate, non-specific mechanisms (innate immunity) and delayed, stimulus-specific responses (adaptive immunity), which contribute to fending off a wide range of potentially invasive microorganisms. This article is an overview of all known data about 'fragile skin'. Fragile skin is defined as skin with lower resistance to aggressions. Fragile skin can be classified into four categories up to its origin: physiological fragile skin (age, location), pathological fragile skin (acute and chronic), circumstantial fragile skin (due to environmental extrinsic factors or intrinsic factors such as stress) and iatrogenic fragile skin. This article includes the epidemiologic data, pathologic description of fragile skin with pathophysiological bases (mechanical and immunological role of skin barrier) and clinical description of fragile skin in atopic dermatitis, in acne, in rosacea, in psoriasis, in contact dermatitis and other dermatologic pathologies. This article includes also clinical cases and differential diagnosis of fragile skin (reactive skin) in face in adult population. In conclusion, fragile skin is very frequent worldwide and its prevalence varies between 25% and 52% in Caucasian, African and Asian population. © 2014 European Academy of Dermatology and Venereology
    • 

    corecore