3,406 research outputs found
Detailed pressure distribution measurements obtained on several configurations of an aspect-ratio-7 variable twist wing
Detailed pressure distribution measurements were made for 11 twist configurations of a unique, multisegmented wing model having an aspect ratio of 7 and a taper ratio of 1. These configurations encompassed span loads ranging from that of an untwisted wing to simple flapped wings both with and without upper-surface spoilers attached. For each of the wing twist configurations, electronic scanning pressure transducers were used to obtain 580 surface pressure measurements over the wing in about 0.1 sec. Integrated pressure distribution measurements compared favorably with force-balance measurements of lift on the model when the model centerbody lift was included. Complete plots and tabulations of the pressure distribution data for each wing twist configuration are provided
Abstract alphabet distortion-rate functions
Two definitions have been given for the distortion-rate function of a sourceuser pair—one involving test channel induced pair probability measures and the other involving general pair probability measures. It is established that both definitions are equivalent for all source-user pairs. Examples are given which exhibit some kinds of the possible pathological behavior of the distortionrate function for general source-user pairs
Revealing The Millimeter Environment of the New FU Orionis Candidate HBC722 with the Submillimeter Array
We present 230 GHz Submillimeter Array continuum and molecular line
observations of the newly discovered FUor candidate HBC722. We report the
detection of seven 1.3 mm continuum sources in the vicinity of HBC722, none of
which correspond to HBC722 itself. We compile infrared and submillimeter
continuum photometry of each source from previous studies and conclude that
three are Class 0 embedded protostars, one is a Class I embedded protostar, one
is a Class I/II transition object, and two are either starless cores or very
young, very low luminosity protostars or first hydrostatic cores. We detect a
northwest-southeast outflow, consistent with the previous detection of such an
outflow in low-resolution, single-dish observations, and note that its axis may
be precessing. We show that this outflow is centered on and driven by one of
the nearby Class 0 sources rather than HBC722, and find no conclusive evidence
that HBC722 itself is driving an outflow. The non-detection of HBC722 in the
1.3 mm continuum observations suggests an upper limit of 0.02 solar masses for
the mass of the circumstellar disk. This limit is consistent with typical T
Tauri disks and with a disk that provides sufficient mass to power the burst.Comment: 12 pages, 7 figures, accepted by Ap
Low-speed wind-tunnel tests of an advanced eight-bladed propeller
As part of a research program on advanced turboprop aircraft aerodynamics, a low-speed wind-tunnel investigation was conducted to document the basic performance and force and moment characteristics of an advanced eight-bladed propeller. The results show that in addition to the normal force and pitching moment produced by the propeller/nacelle combination at angle of attack, a significant side force and yawing moment are also produced. Furthermore, it is shown that for test conditions wherein compressibility effects can be ignored, accurate simulation of propeller performance and flow fields can be achieved by matching the nondimensional power loading of the model propeller to that of the full-scale propeller
Evaluation and extensions of the probabilistic multi-hypothesis tracking algorithm to cluttered environments
This research examines the probabilistic multi-hypothesis tracker (PHMT), a batch mode, empirical, Bayesian data association and tracking algorithm. Like a traditional multi-hypothesis tracker (MHT), track estimation is deferred until more conclusive data is gathered. However, unlike a traditional algorithm, PMHT does not attempt to enumerate all possible combinations of feasible data association links, but uses a probabilistic structure derived using expectation maximization. This study focuses on two issues: the behavior of the PMHT algorithm in clutter and algorithm initialization in clutter. We also compare performance between this algorithm and other algorithms, including a nearest neighbor tracker, a probabilistic data association filter (PDAF), and a traditional measurement oriented MHT algorithm.Naval Undersea Warfare CenterApproved for public release; distribution is unlimited
Assessing molecular outflows and turbulence in the protostellar cluster Serpens South
Molecular outflows driven by protostellar cluster members likely impact their
surroundings and contribute to turbulence, affecting subsequent star formation.
The very young Serpens South cluster consists of a particularly high density
and fraction of protostars, yielding a relevant case study for protostellar
outflows and their impact on the cluster environment. We combined CO
observations of this region using the Combined Array for Research in
Millimeter-wave Astronomy (CARMA) and the Institut de Radioastronomie
Millim\'{e}trique (IRAM) 30 m single dish telescope. The combined map allows us
to probe CO outflows within the central, most active region at size scales of
0.01 pc to 0.8 pc. We account for effects of line opacity and excitation
temperature variations by incorporating CO and CO data for the
and transitions (using Atacama Pathfinder Experiment and
Caltech Submillimeter Observatory observations for the higher CO transitions),
and we calculate mass, momentum, and energy of the molecular outflows in this
region. The outflow mass loss rate, force, and luminosity, compared with
diagnostics of turbulence and gravity, suggest that outflows drive a sufficient
amount of energy to sustain turbulence, but not enough energy to substantially
counter the gravitational potential energy and disrupt the clump. Further, we
compare Serpens South with the slightly more evolved cluster NGC 1333, and we
propose an empirical scenario for outflow-cluster interaction at different
evolutionary stages.Comment: 26 pages, 15 figures, accepted for publication in the Astrophysical
Journa
Ionospheric refraction effects on orbit determination using the orbit determination error analysis system
The influence of ionospheric refraction on orbit determination was studied through the use of the Orbit Determination Error Analysis System (ODEAS). The results of a study of the orbital state estimate errors due to the ionospheric refraction corrections, particularly for measurements involving spacecraft-to-spacecraft tracking links, are presented. In current operational practice at the Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF), the ionospheric refraction effects on the tracking measurements are modeled in the Goddard Trajectory Determination System (GTDS) using the Bent ionospheric model. While GTDS has the capability of incorporating the ionospheric refraction effects for measurements involving ground-to-spacecraft tracking links, such as those generated by the Ground Spaceflight Tracking and Data Network (GSTDN), it does not have the capability to incorporate the refraction effects for spacecraft-to-spacecraft tracking links for measurements generated by the Tracking and Data Relay Satellite System (TDRSS). The lack of this particular capability in GTDS raised some concern about the achievable accuracy of the estimated orbit for certain classes of spacecraft missions that require high-precision orbits. Using an enhanced research version of GTDS, some efforts have already been made to assess the importance of the spacecraft-to-spacecraft ionospheric refraction corrections in an orbit determination process. While these studies were performed using simulated data or real tracking data in definitive orbit determination modes, the study results presented here were obtained by means of covariance analysis simulating the weighted least-squares method used in orbit determination
- …