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Abstract Alphabet Distortion-Rate Functions* 

JAMES G. DUN~AM t 

Department of Electrical Engineering, Washington University, 
St. Louis, Missouri 63130 

Two definitions have been given for the distortion-rate function of a source- 
user pair--one involving test channel induced pair probability measures and 
the other involving general pair probability measures. It is established that 
both definitions are equivalent for all source-user pairs. Examples are given 
which exhibit some kinds of the possible pathological behavior of the distortion- 
rate function for general source-user pairs. 

I .  INTRODUCTION 

The  standard definit ion for the rate-distort ion function of a source-user pair, 
as given by Shannon (1959) and Berger (1971), involves a limit of information 
theoretic minimizat ions over source-user pair probabi l i ty  measures on random 
vectors which are induced by test channels. The  operational significance of this 
rate-distort ion function was established by a theorem on block source coding 
with a fidelity criterion for discrete-time, abstract alphabet, stationary and 
ergodic sources and single-letter fidelity criteria with a reference letter (Berger 
(1971), Theorems 7.2.4 and 7.2.5). This  theorem showed that the smallest 
at tainable rate using block codes with a distortion constraint was given by this 
rate-distort ion function evaluated at the distortion constraint. 

In  many communicat ion situations, one has a rate constraint rather than a 
distort ion constraint. For  example, one desires to t ransmit  a given source over a 
given finite capacity channel and the problem is to determine the min imum 
distortion which can be achieved by an ideal communicat ion system. As is well 
known, the rate-distort ion function is a convex nonincreasing function and, 
therefore, has a well defined inverse function called the distort ion-rate function. 
T h e  operational significance of this  distort ion-rate function is that the smallest 
at tainable distort ion using block codes with a rate constraint  is given by  this 
function evaluated at the rate constraint. Thus  the distort ion-rate function 
formulation of the communication problem yields the natural  approach for 
solving problems with a rate constraint. 
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Gallager (1968); Csisz~ir (1974); and Gray, Neuhoff and Omura (1975) have 
considered an alternate definition of the rate-distortion function or, equivalent/y, 
the distortion-rate function, which involves a limit of information theoretic 
minimizations over general source-user pair probability measures on random 
vectors. As shown by Csisz~r (1974), this definition of the rate-distortion function 
allows one to generalize the familiar finite-alphabet ease results for evaluating 
the rate-distortion function to the general case. As shown by Gray, Neuhoff and 
Omura (1975), this definition of the distortion-rate function is easily generalized 
to stationary process distortion-rate functions which are needed to evaluate the 
performance of stationary and block stationary data compression systems. 

For the finite alphabet case, Gray, Neuhoff and Omura (1975) showed that 
both definitions of the distortion-rate function were the same since every 
source-user pair probability measure is equivalent to a pair probability measure 
induced by connecting the source to some test channel. However, in the abstract 
alphabet case this equivalence is not immediately clear. When the average 
mutual information between the source and user is finite, it is shown in section I I I  
that this equivalence holds and, therefore, both definitions of the rate-distortion 
function and the distortion-rate function are the same. 

Properties of the rate-distortion function have been extensively studied for 
general source-user pairs, but less attention has been paid to the properties of 
the distortion-rate function. In section IV examples of source-user pairs are given 
which show some kinds of the possible pathological behavior of the distortion- 
rate function in the general ease. One example shows that the distortion-rate 
function may have a discontinuity at rate zero even if it is finite everywhere, 
paralleling Csisz~r's (1974) example where the rate-distortion function is finite 
everywhere, but discontinuous at distortion zero. Another example shows that 
the distortion-rate function may be infinite for an interval of rates. 

I I .  MATHEMATICAL PRELIMINARIES 

Let (A, d )  be an abstract measurable space where the abstract space A is 
called the source alphabet. Define the product measurable space (A% d °) = 

g o  

Xk=-~o (Ak, dk) where (A~, ~k) = (A, d ) ,  all k; A °~ is the space of all doubly 
infinite sequences x = (..., x_z, x0, x 1 ,...) from A; and d ~° is the usual product 
a-algebra. For n = 1, 2,..., define the product measurable space (A% d n) = 
Xe=l ( 7,, dk)  and a typical element from A m is denoted by x ~ = (xl x~). 
Let X~: A ~ --~ A be the kth scalar coordinate function defined by Xk(x) =- x~, 
all x ~ A% Let Xn: A m ~ A '~ be a vector coordinate function defined by the 
identity mapping Xn(x  n) ~ x n. 

We denote by [A,/~, X] or/z the discrete-time source or process with under- 
lying alphabet A, probability measure/z on (A% ~o~) and name X. A source is 
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stationary (ergodic) if the probabil i ty measure/~ is stationary (ergodic). I f  d is 
a finite alphabet, then [A,/x, X] is called a finite alphabet source. 

Let  (B, ~ )  be an abstract measurable space where the abstract space B is called 
the source reproduction alphabet. For n = 1, 2,..., define, as before, the product  
measurable spaces (B% ~ )  and ((A × B)% ( d  × 92)~). A typical element 
f rom B n and (A × B) n is denoted by yn = (y~,. . . ,  y~) and (x, y)n = (x n, y,~) = 
(x 1 .... , x=; Yl  ,..., Y , ) ,  respectively. Let  yn:  B n ~ B n and (X,  y)n:  (A × B) ~ 
(A × B) n be vector coordinate functions defined by the identity mappings 
y~(y~)  = yn and (X ,  Y)~(x,  y)~ = (x, y)n = (x n, yn), respectively. 

A mapping q~: ~ n  × A n _+ [0, 1] is called a regular conditional probability 
measure if: (1), the set function q ( ' l x  n) is a probabili ty measure on ~n ,  all 
x n ~ An; and (2), the function q(E [ ') is ~¢'n-measurable, all E E .~% We denote 
by [A n, X ~, q~, B n, P~] or qn the test channel connecting the source space A ~ 
to the source reproduction space B n through the regular conditional probability 
measure qn. L e t / z  n denote the restriction of the source probability measure /z  
to the source space A s. I f  a source/z n is "connected" to a test channel qn  then 
a source-user pair probability measure pn is indiced on ((A × B) ~, ( ~  × ~)n)  
where 

p~(E × F) = f~ q~(F I x~) ~ ( x ~ ) ,  E ~ d~ ,  F ~ ~ .  

Denote the probability measure indiced on the source reproduction space B n by 
v'~(F) = p ' ( A  n × F),  all F ~ ~n .  

I f  the source-use pair probability measure p~ is absolutely continuous with 
respect to the product  of the marginal probability measures/z  ~ and v n, p~ 
/~n × v n, let fn > / 0  denote the Radon-Nikodym derivative of pn with respect 
to /z n × v% that is, pn(G) : ~c f~  dl Ln × v~, all G ~ ( d  × ~)n.  Then  log2f n 
is called the information density and its expectation 

E~,[log2f,] = ~ fn log,,fn dt zn × vn = I (X~;  Y~) 
( A N B )  n 

is the average mutual information between the random vectors X ~ and Y% t f  
pn ~ / , ~  × v~, then the information density is not defined and I (X~;  yn )  = 
+ oo. Pinsker (1964) shows that this definition of the average mutual information 
I (X~;  Y~) is equivalent to the usual definition for abstract spaces which involves 
a supremum over finite measurable partitions. 

I I I .  DISTORTION-RATE FUNCTIONS 

For each integer n, let p~: (A × B) ~ --+ [0, oo] be a measurable function, 
called a word distortion measure, that specifies the cost in reproducing the source 
word x n by the source reproduction word y~. The  family of word distortioIl 
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measures generates a fidelity criterion F o = {Pn] n ~- 1, 2,...} which is used to 
measure the accuracy of the user 's reproduction of the source. A fidelity criterion 
Fp composed of word distortion measures of the form pn(x~,y ~) = 
n-1 ~ = 1  p(x~, y~) is called a single-letter fidelity eriterion. 

In  the literature, two different distortion-rate functions associated with a 
source-user pair [A,/~, X] and F o have appeared. Let  ~ ( / ~ ,  R) denote the set of 
all source-user pair probability measures p~ defined on (A × B) n which are 
induced by connecting the source /~  on A n to a test channel qn on ~ × A n and 
have I(X~; Y~) ~ nR. Then  the test channel distortion-rate function is defined, 
following Shannon (1959) and Berger (1971), by 

where 

D(R) = inf D.(R), 
n 

D,(R) = inf E~[p,(X n, Y")] 
Pe~n(U,R) 

where Dn(R ) is infinite of there is no pair measure meeting the cqndition. Let  
~@~(/~, R) denote the set of all source-user pair probability measures fin defined 
on (A × B) n which have fn (E  × B n) = t*n(E), all E ~ ~ n ;  and have I(Xn; Yn) <~ 
hR. Then  the pair measure distortion-rate function is defined, following Gallager 
(1968) and Csisz~r (1974), by 

where 

D(R) = in f / ) . (R) ,  

D, (R)  = inf E~[pn(X ~, yn)], 
.~e~(u,R) 

where Dn(R) is infinite if there is no pair measure meeting the condition. 
Since each pnE ~( t* ,  R) is a source-user pair probability measure that has 

pn(E × B n) -~ t,~(E), all E ~ d ~ ;  and has I(Xn; Y ' )  ~ nR, pn ~ ~n(t~, R). 
This  implies that ~ ( / , ,  R) _C ~,(/~, R) and so D~(R) ~ Dn(R) for all n. Thus  
D(R) >/D(R) for all finite rates R. 

I f  every source-user pair probability measure f~@ .~(/~, R) were, in fact, 
induced by connecting the source/z ~ to some test channel qn. then ~n(/~, R) 
.~.(/~, R) and we would have D(R) = D(R). For example, suppose A and B are 
finite alphabets. For any f n  ~ ~n(/z, R) define q~: ~n  × A n ~ [0, l] by 

qn(y~ [ x~) = p~(x% y~)/~(x ~) if tz(x ~) va 0 

= 0 else 

and it is clear that q~ is a test channel, that is, it is a regular conditional probability 
measure. Since connecting the source/,~ to q~ induces fn ,  ~ ( / z ,  R) -~ ~ ( t* ,  R) 
and so D(R) ~ D(R) for all finite rates. I t  is known (Parthasarathy (1967)) that if 
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(d ,  d )  and (B, ~ )  are separable standard Borel spaces, that is, the a-algebras are 
a-isomorphic to the a-algebra of a complete separable metric space, then such a 
test channel can always be found since regular conditional probability measures 
always exist. However, not every abstract measurable space is a separable 
Borel space. 

T h e  following theorem shows that when the average mutual  information 
[(Xn; Y~) is finite a regular conditional probability measure can always be found 
and, therefore, D(R) = / 9 ( R )  for all finite rates. Thus  both definitions of the 
distortion-rate function are the same for general source-user pairs. 

THEOREM 1. Let [A, t*, X] be a source and let F o be a fidelity criterion. Then 
D(R) = D(R) for all rates R ~ [0, oo). 

Proof. Fix a rate R ~ [0, oo), a source-user pair probability measure ig n 
~n(/*, R) and it suffices to show thatlg n ~ ~an(/* , R). SinceI(X~; yn) <~ nR < 0% 
i~ n is absolutely continuous with respect to the product of the marginal measures 
/,n and v n, fin ~ tzn × vn. Let f~ ~ 0 denote the Radon-Nikodym derivative 
off i  ~ with respect to/,n X v ~, that is,fi~(G) = f c f~  dt *'~ X v '~, all G ~ ( d  X ~)n.  
Define the function ~n: ~ n  × A n _+ [0, oo] by ~n(F I x ~) = f e f ( x  n, y") dv'~(yn); 
all F e ~n ,  x ~ e A n. Observe that for each F ~ ~n,  qn(F ] ") is an t in-measurable  
function (Halmos (1950), Th .  36.B) and for each x n e A n, qn(. I x9 is a positive 
measure on ~ (Halmos (1950), Sec. 23). However, ~n is not necessarily a regular 
conditional probability measure since fft~(Bnlx n) is not necessarily equal to 
one for all x n c A n. Our  goal is to find a regular conditional probability measure 
q~ equivalent to ~% 

Let  Gn = {x n E A  n f qn( Bn I xn) = 1} and we claim that /zn(G~) = 1. For 
each integer k, let ET~={x n ~ A  n lqn (B~]xn )  > l - / l / k }  and let F~ = 
{ xn ~ An ] qn( Bn I xn) < 1 -- 1/k}. Using the Fubini Theorem,  

~ ( E ~ )  = ~n(E~ × B n) 

= f~×.°f"d~ '~ x ~'n 

= ~ [f~A(x~, yn)d~(yg] d.~(x9 

= f~ 4~(B n I x n) d~(x n) 

>~ (1 + 1/k) fE~ dtz~(x'9" 

Thus  /~n(E~) ~ (1 + I/k) t~n(E~) which implies that /z~(Ez~) = 0, all k. In  a 
similar fashion, one shows that /zn(_F~) ~ (1 - -  l /k) t~(Fk)  which implies that 

co E , co /,~(F~) = 0, all k. Since G, /  = U,~=I ~ u FT~ 0 ~</,~(G,~ ~) ~< ~k=~/,~(E~) + 

64314o/2-5 
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~2~--1/zn(F~) = 0. Since Gn ~ is the complement of G,~,/zn(G~) = 1, completing 
the proof of the claim. 

Let  a ~ be a point probabil i ty measure defined on (B ~, ~ )  by 

an(F) = 1 y*  E F  

= 0 y *  CF 

where y*  is an arbitrary but  fixed point in B n. Define the mapping qn: ~ n  × 
A n --~ [0, 1] by 

q"(FI x") = ~"(F1 x") XG.(X n) -t- ,~"(F) X~:(xn) 

where Xa denotes the indicator function of the set G. We claim that qn is a 
regular conditional probability measure:  (1), since Gn is t in-measurable  and 
since the sum and product  of t in -measurable  functions is t in-measurable ,  it 
follows that qn(F [ ") is t in-measurable  for e achF  ~ ~n ;  and (2), for each x n ~ A n, 
qn(. [xn) is a positive measure where q n ( B n l x ' ~ ) =  1. Thus  qn(" Ix") is a 
probabil i ty measure for each x ~  An. Therefore,  qn is a regular conditional 
probability measure. 

Let  pn be the pair  probability measure induced by connecting the source/x n 
to the test channel q", that is, for each G ~ ( d  × .~)n, pn(G ) = f qn(G(xn ) [ x n) 
dl~n(x n) where G(x n) is the x n section of G. We now show that pn = fin. 

For any set E × F where E ~ d n and F E ~n,  

p" (E  x F)  = f~ qn(F I x" ) dt~n(x n) 

= f~,~qn(Flxn)+"(x")+ f~,~°oq"(FIx'ga~"(x.) 

Examining the first term of (1), the definitions of qn and ~n show that 

(1) 

f~,~. q.(F i x.) dt~"(x") = f~n~. q.(S I x.) dt~"(x") 

= • . ( E  x F),  

where the third equality follows from the fact that 0 = I~n(Gn c) >/f i((E t~ Gn c) × 
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F ) / >  0. Examining the second term of (1), the definition of q~ shows that 

0 ~ fEna o q~(F L x ~) dtz~(x ~) 

f~: at'n(x~) 
~< ~'*(an o) = 0. 

Thus p•(E × F) ~ ~'~(E × F). Since the probability measures pn and fi~ agree 
on a class of sets which generates the a-algebra ( d  × ~)~ (Halmos (1950), 
Sec. 33), the standard extension theory of measure theory (Halmos (1950), 
Th.  13.A) shows that p~ =/~n. Therefore, ~ E ~,~(l~, R), completing the proof 
of the theorem. 

IV. EXAMPLES OF DISTORTION-RATE FUNCTIONS 

For many source-user pairs of interest, the rate-distortion functioning or, 
equivalently, the distortion .rate function, can be explicitly evaluated as discussed 
by Gallager (1968), Berger (1971) and Csiszar (1974). Properties of the rate- 
distortion have been extensively studied for general source-user pairs, but less 
attention, has been paid to the properties of the distortion-rate function. Examples 
will be given which show some of the kinds of the possible pathological behavior 
of the distortion-rate function for general source-user pairs. 

Let the source-user pair [A,/,, X] and_N o have a distortion-rate function D(R). 
Define the following parameters of D(R): 

R~ = inf{R > /0  [ D(R) < ~ }  

d o = l i ~ D ( R  o + c) A D(R o +).  

Since D(R) is a nonincreasing function in R, R 0 represents rate where if 
R > R0, then D(R) < oo and if 0 <~ R < Ro, then D(R) --  co. D(Ro) may be 
finite or infinite. If  D(R) is continuous from the right at Ro, then d o ~- D(Ro). 
The general importance of R o is the D(R) is a convex noninereasing function 
for all rates R ~ R 0 . The following example is typical of many distortion-rate 
function where R o = 0 and D(Ro) ~ d o . 

EXAMPLE 1. The source is an independent, identically distributed equip- 
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robable binary process with a Hamming distance distortion measure dn defined by 

dH(X, y )  = O if x = y 

= 1 else. 

The  rate-distortion function R(D)  is given by 

R(D)  = 1 + O l o g  2 o + ( 1 - h )  l o g 2 ( 1 - D )  if h ~ [ 0 , ½ ]  

= 0 else. 

Letting R-I (D)  denote the inverse function of R(D),  defined for R ~ [0, 1], 

D(R)  = R- I (D)  if R e [0, l] 

~- 0 else. 

Thus  it follows that R 0 : 0 and D(Ro) : d o : ½. 

The next example of a source-user pair shows that the distortion-rate function 
D(R)  may have a discontinuity at the rate R 0 = 0, paralleling Csisz~ir's (1974) 
example where the rate-distortion function R(D)  is finite everywhere, but  
discontinuous at distortion D : 0. Since D(R)  is convex and nonincreasing 
for all rates R ~ R 0 , it follows that the only finite rate where D(R)  can possibly 
have a discontinuity is at R o . We note that this source-user pair is similar to 
Berger's (1975) example of an information-singular random process but different 
in that we randomize the initial phase while Berger randomizes the initial 
translation constant. 

EXAMPLE 2. Let  A = {x ] x complex number, I x ] = 1} where ] • [ denotes 
the modulus (length) of x. Then  A is the unit circle in the complex plane and let z~¢ 
be the Borel subsets of A. Let [A,/~, X]  be the process formed by irrational 
rotations on the unit circle, that is, let Z be a uniform random variable on 
[0, 2rr), let ~ be an irrational number, and define the complex random process 
X~ = e i(~k+z) and note that XTc ~ e i ~  exp(iZ) ----ckX. This process is easily 
shown to be stationary and ergodic (Billingsley (1965), pp. 9-11). 

Let  the source reproduction space B ~- A and define a per-letter distortion 
measure p by p(x, y) ~ Ix  - - y  ]2. Let  F o be the single-letter fidelity criterion 
generated by the per-letter distortion measure p. For the source-user pair 
[_/1, y.z, X]  and Fo,  let D ( R )  be the associated distortion-rate function and the 
following theorem gives the explicit evaluation of D(R).  

THEOREM 2. 
above. Then 

Let  the source [A, ~, X]  and the fidelity criterion F o be given as 

D(R)  = /2~r l e ~ - -  1 [ 2 dz  R -= 0 

R > O .  
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Proof. Fix a rate R E (0, oo) and, for each integer n, divide the interval 
[0, 2~r) into [2 ~R] equal-length subintervals, where [z] denotes the greatest 
integer bounded by z. Let  2 denote the center of the interval in which Z lies and 
then associate Y = exp(i~) with the corresponding random variable X. Next, 
associate Xk = c~X with Y~ = ckY and let p~ denote the induced source-user 
pair probability measure. Since yn can produce at most [2 ~R] distinct blocks of 
source reproduction symbols. 

n-aS(X~; Y'~) ~ n-aH(Y '~) ~ n -~ log[2 ~R] <~ R, 

where H(Y n) is the usual definition of the entropy of a finite alphabet random 
variable yn. Computing the expected distortion, 

E[p~(X'~, g - ) ]  = E[I e*(~-~' - 1 I ~] ~< ~r~2 -~R 

since ] Z - -  21 ~< ~2 -"R and I e~ - 1 i ~ I z ] for all real z. Thus  D,~(R) 
Ir22 -~nR and so D(R) = O. 

We now evaluate D(0). Since R = 0, any p~ ~ ~ ( /~ ,  0) has I(X~; Yn) = 0 
and Pinsker (1964), Eq. (2.2.1), shows that p~ = / ~  × v ~. Evaluating the 
distortion, the Fubini theorem and the stationarity of k~ show that 

E[p,~(X n, Y~)] : f~, [n-l ~= 1 LINk(xn)  -- Yl~(y,~)12 dl~'~(x~)] d~,n(y n) 

= fB~[n-1211/2~r f;" ckei~ -- Yk(y~)12 dz] dv~(y~) 

= fB, [n-l ~=l l/21r f :  ~ ei~ -- l l2 dz] dv~(yn) 

2~ 

= lt27rfl ] e i ~ - I  [~dz. 

Therefore,  D(0) = 1/2~ f~= I e~ - 1 ]2 dz, completing the proof of the theorem. 
Next, we give an example of a finite-alphabet source-user pair which shows 

that R o may be finite and strictly greater than 0. Thus  D(R) may be infinite for 
the interval of rates [0, R0) and finite for the semi-infinite interval of rates (Ro, oo] 

EXAMPLE 3. Let  A = {0, 1, 2, 3}, let A ~ (0, 1) and let the source [A,/x, X]  
be an independent, identically distributed random process where 

~({i)) = a /2  i = o, 1 
= (1 - - A ) / 2  i = 2 ,  3. 
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Let  B = A and define a per-letter distortion measure p by 

p(x, y) = dn(x, y) if [y/2] ~ x/2 < [y/2] + 1 

: ~ else 

where dH is the Hamming  distance distortion measure of Example 1 and Ix] 
denotes the greatest integer bounded by x. Let  F o be the single-letter fidelity 
criterion generated by p. For the source-user pair [A,/*, X-] and Fo,  let D(R) be 
the associated distortion-rate function and the following theorem gives the 
explicit evaluation of D(R). 

T H E O R E M  3 .  

Then 
Let the source [A,/*, X]  and the fidelity criterion F o be as above. 

D(R) = D'(R -- hb(A)) R ~ hb(A) 

: oo else 

where D'(R) is the distortion-rate function of Example 1 and hb(h) = - -h  log~ h - -  

(1  - -  h)  l o g ~ ( 1  - -  A).  

Proof. Since the source is memoryless and the fidelity criterion is single- 
letter, D(R) = DI(R ). For a rate R and a pair probabili ty measure p ~ .~a(/*, R), 
suppose that E~[p(X 1, y1)] ~ c~. The  distortion measure p implies that 0(1) 
must  be reproduced as a 0 or 1 and that 2(3) must be reproduced as a 2 or 3. 
T h u s  the pair probability measure p can be expressed as p = Apl 4- (1 - -  A)p~ 
where Pl is a pair probability measure on {0, 1} × {0, 1) and P2 is a pair proba- 
bility measure on {2, 3} × {2, 3}. Let/*l(/*e) and vl(v2) be the corresponding A 
and B marginal probability measures, respectively, of Pl(P2). T h e n  /* 
A/* 1 4- (1 - -  2)/z 2 and v = 2F 1 4-  (1 - -  2) v 2 . For the average mutual informa- 
tion, 

I ,(X; Y) = M,I(X; Y) 4- (1 - -  2) I~(X; Y) + h~(2) (2) 

where hb(h) = - -h  log~h - -  (1 - -  A) log2(1 - -  A) and for the expected distortion, 

E~[p(X, Y)] = AE, I[p(X, Y)] 4- (1 - -  A) E~[p(X, Y)]. (3) 

T h e  source-user pair / '1  and F o and the source-user pair/*3 and Fo are equiva- 
lent to the source-user pair of Example 1. Let  D'(R) denote the distortion-rate 
function of Example 1. Then  (2) and (3) together imply that  

D(R) ~ XD'(R~) + (1 - -  A) D'(R~) (4) 

where R ~ hb(h ) 4- AR1 4- (1 - -  A) R 2 . 
Let  D*(R) = inf{hD'(R1) 4- (1 - -  A) D'(R2) ] R ~ hb(A) + AR1 4- (1 - -  A)R2}. 

We claim that D(R) -~ D*(R) for all rates R >/hb(h ). First, (4) shows that  
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D(R) <~ D*(R),  all R ~ hb(h). Fix an e > 0, a rate R >~ ha(h) and choose a 
pair  probabil i ty  measur e p e ~l(/z,  R) where E~[p(X, Y)] ~ D(R) -t- e < oo. 

T h e n  

D(R) -k ~ >~ E~[p(X, Y)] 

AE~I[p(X , Y)] @ (1 - -  h) E,~[p(X , Y)] 

>~ AD'(I~I(X; Y))  -k (1 - -  h) D'(I,~(X; Y))  

>/D*(R) .  

Since this is true for all e > 0, D(R) >/D*(R)  and, therefore, D(R) = D*(R),  
R ) ha(h), completing the proof  of the claim. 

Since D'(R) is a convex ~A function for R /> R 0 = 0, 

AD'(R1) -I- (1 - -  h) D'(Re) >/D' (hR 1 @ (1 - -  h) R2) 

= D'(R - -  ha(h)). (5) 

for all R 1 and R~ where R -- ha(h) = hR~ + (1 - -  h) R~. Equali ty holds in (5) 
when RI = Rz = R -- ha(h ). Therefore,  D'(R --  ha(h)) = D*(R) = D(R) for 
all rates R ~ ha(h ). 

Suppose that D(R) < oo for some rate R < ha(h ). Since the average mutual  
information is always nonnegative, (2) is violated, producing a contradiction. 
Therefore,  D ( R ) =  oo for all rates 0 ~ R < ha(h), completing the proof 
of the theorem. 

RECEIVED:May 27, 1978 
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