
Calhoun: The NPS Institutional Archive

Reports and Technical Reports All Technical Reports Collection

1998-01

Evaluation and extensions of the

probabilistic multi-hypothesis tracking

algorithm to cluttered environments

Hutchins, Robert G.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/15311



This document was downloaded on March 08, 2013 at 11:14:58

 

Author(s) Hutchins, Robert G.

Title Evaluation and extensions of the probabilistic multi-hypothesis tracking algorithm to
cluttered environments

Publisher Monterey, California. Naval Postgraduate School

Issue Date 1998-01-01

URL http://hdl.handle.net/10945/15311



NPS-EC-98-015 

NAVAL POSTGRADUATE SCHOOL 
Monterey, California 

Evaluation and Extensions of the 
Probabilistic Multi-Hypothesis 

Tracking Algorithm to 
Cluttered Environments 

R. G. Hutchins and D. T. Dunham 

January 1998 

Approved for public release; distribution is unlimited. 

Prepared for: Naval Undersea Warfare Center, Newport, RI 

A 

W 
W - 
4 

4 

4 

cA4 

0 
-F- 
cA4 



NAVAL POSTGRADUATE SCHOOL 
Monterey, California 

RADM ROBERT C. CHAPLIN 
Superintendent 

R. Elster 
Provost 

This report was sponsored by the Naval Undersea Warfare Center, Newport, FU. 

Approved for public release; distribution is unlimited. 

The report was prepared by: 

R. G. HUTCHINS 
Associate Professor 
Department of Electrical and 
Computer Engineering 

Reviewed by: Released by: 

Chairman Associate Provost and 
Department of Electrical and Dean of Research 
Computer Engineering 

I 

I 
I 

I 
I 
~ 



REPORT DOCUMENTATION PAGE 

I2a. DISTRIBUTIONIAVAILABILITY STATEMENT 

Form Approved I I OMB No. 0704-0188 

12b. DISTRIBUTION CODE 

3. REPORT TYPE AND DATES COVERED 

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 
OF REPORT ' OF THIS PAGE I OFABSTRACT 

I January 1998 I Final Repi 
1. TITLE AND SUBTITLE 

Evaluation and Extensions of the Probabilistic Multi-Hypothesis 
Tracking Algorithm to Cluttered Environments 

R.G. Hutchins and D.T. Dunham 
i. AUTHOR(S) 

20. LlMllTATlON OF 
ABSTRACT 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Department of Electrical and Computer Engineering 
Naval Postgraduate School 
Monterey, CA 93943-5000 

I. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

Naval Undersea Warfare Center 
1176 Howell Street 
Newport, RI 02841-5047 

t 

5. FUNDING NUMBERS 

N6660498WR80335 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

NPS-EC-98-015 

10. SPONSORlNG/MONlTORlNG 
AGENCY REPORT NUMBER 

Approved for public release; distribution is unlimited. 
A 

I 

13. ABSTRACT (Maximum 200 words) 

This research examines the probabilistic multi-hypothesis tracker (PHMT), a batch-mode, 
empirical, Bayesian data association and tracking algorithm. Like a traditional multihypothesis 
tracker (MHT), track estimation is deferred until more conclusive data is gathered. However, 
unlike a traditional algorithm, PMHT does not attempt to enumerate all possible combinations of 
feasible data association links, but uses a probabilistic structure derived using expectation- 
maximization. This study focuses on two issues: the behavior of the PMH." algorithm in clutter 
and algorithm initialization in clutter. We also compare performance between this algorithm and 
other algorithms, including a nearest neighbor tracker, a probabilistic data association filter 
(PDAF), and a traditional measurement-oriented MHT algorithm. 

I 15. NUMBEROFPAGES 14. SUBJECT TERMS 

Kalman filtering, multihypothesis tracking, multitarget tracking in clutter Y 16. PRICE CODE 

UNCLASSIFIED I UNCLASSIFIED I UNCLASSIFIED I SAR 
NSN 7540-01 -280-5500 STANDARD FORM 298 (Rev. 2-89) 

Prescribed by ANSI Std. 239-18 298-102 



Evaluation and Extensions of the Probabilistic 
Multi-Hypothesis Tracking Algorithm to 

Cluttered Environments 

R.G. Hutchins and D.T. Dunham 



1. Introduction 

Dr. Roy Streit and colleagues at the Naval Undersea Warfare Center, Division Newport, 
have developed a probabilistic multi-hypothesis tracking (PMHT) algorithm that simplifies multi- 
hypothesis tracking, potentially extending the applicability of these techniques to a broader range of 
problems. The algorithm does not contain an inherent initialization strategy; nor has there been a 
realistic study of the behavior of the algorithm in cluttered environments. The purpose of the 
research detailed in this report has been four-fold: to test and validate this new algorithm by 
comparing it with a nearest neighbor algorithm, a traditional multiple hypothesis tracking (MHT) 
algorithm, and a probabilistic data association filter (PDAF) using standardized test scenarios; to 
study comparative algorithm performance in the presence of clutter; to evaluate system performance 
using realistic initiation procedures in the presence of clutter, and to initiate a study of attribute- 
augmented measurement-to-track association procedures. The ultimate goal is to develop a 
workable set of algorithms that is practical and that will achieve reasonable performance in the 
presence of clutter. 

This report is divided into the following sections: Section 2 discusses the specific 
algorithms and equations used in this research, including the baseline PMHT algorithm, its 
extensions and alternative initialization strategies, the MHT algorithm and PDAF algorithm as they 
have been implemented in this research, and the attribute-augmented model studied in this initial 
research. Section 3 presents the specific scenarios used in the comparative algorithm analysis, 
along with the results of this analysis. Section 4 gives our summary and conclusions. 

2. Algorithms and Equations 

The specific algorithms and equations used in this research are detailed in this section. 
These algorithms include the baseline PMHT and its extensions, the MHT, the PDAF, and 
algorithms pertaining to measurement processing and track initiation. The subsections below begin 
with assumed target motion models and measurement processing, which are used by all algorithms 
tested in the scenarios detailed in Section 3, followed by track initiation, a detailed discussion of 
the PMHT and its extensions as implemented here, the nearest neighbor and PDAF algorithms, and 
the MHT. This section concludes with a discussion of attribute data as implemented in this study. 

2.1 Target Motion Model 

noise. Hence, a real target is assumed by the algorithm to move according to the equation: 

I 

Straight line target motion is assumed, with perturbations given by additive, Gaussian 
' 

x(t,k + 1) = A(A)x(t,k)+ w(t,k) 

where x(t,k) and vx(t,k) are the position and velocity components of target t at time k in the x 
dimension, y(t,k) and vy(t,k) are similar quantities in the y dimension, Ais the time between 
measurement scans, and W j ( t , k )  are noise components with covariance given by: 
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and 4 is a parameter that captures the wideband behavior associated with target maneuvers. In 
practice, q is used to adjust the performance of the Kalman Filter. When 4 is zero there is no plant 
noise, and the filtering/smoothing algorithms attempt to fit an exact straight line to the data. 
However, this can lead to covariance collapse in the Kalman algorithms, giving nearly singular 
covariance matrices. Hence, 4 is usually set to a small but nomero value when non-maneuvering 
targets are to be tracked. When target maneuvers are expected, 4 can be set to a value consistent 
with the expected frequency and volatility of the maneuvers. 

2.2 Measurement Processing 

The underlying measurement model assumed in all work covered in this research is that of 
a sensor that returns range and bearing information corrupted by additive, gaussian noise. Hence, 
the underlying target measurement is of the form: 

. 

where r(m,k) is the measured range for measurement m at time k (assuming the measurement 
comes from target t), $(m, k) is the measured bearing for measurement w1 at time k (assuming the 
measurement comes from target t), ra and $a are the actual (true) values of these quantities, and er 
and e$ are the errors in these quantities, where er and e4 are normally distributed random 
variables with zero mean and joint covariance matrix given by: 

The underlying methodology used to combine measurements into track estimates is the 
Kalman Filter or its related algorithm, the Kalman Smoother. The Kalman methodology requires 
a linear state equation (discussed above) and a linear measurement equation. The above state 
equation for a non-maneuvering target is linear in Cartesian coordinates, but the bearing 
measurements are nonlinear in the Cartesian state coordinates. Lerro and Bar-Shalom have 
demonstrated that preprocessing range-bearing measurements into Cartesian space prior to 
implementing the Kalman algorithm is superior to utilizing the raw range-bearing measurements 
and employing the Extended Kalman Filter or Smoother [l]. They recommend use of the 
following 'debiased' equations to convert the range-bearing measurements into Cartesian 
coordinates: 

where x = x(m,k), y = y(m,k), r = r(m,k), @ = @(rn,k), the Cartesian and polar coordinate 
versions of measurement m at time k. The corresponding covariance matrix is given by: 

where 
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R11 = r2e-20z[cos2($)(cosh(2~$) -cosh(c$)) 
+ sin2(@)(sinh(2o$) - sinh(o$))] 

+ sin2($)(2sinh(2$) - sinh(~$))] 

+ cos2($)(2sinh(2o$) - sinh(o$))] 

+ oFe-2 oz [sir?( $)( 2 cosh(2 03) - cosh( 08)) 
+ cos2(@)(2sinh(2o$) - sinh(o$))] 

~ 1 2  = sin($)cos($)e4o$[+ + (r2 + +)(I - e-%~ 

+ oFeL2 o$ [ cos2( 9 )( 2 cosh( 2 o$ ) - cosh( 08)) 

R22 = r2e-20$[sin2($)(cosh(2~$) - cash($)) 

In this approach, each Cartesian measurement at each time has a distinct set of measured values 
and a distinct covariance. In this research we assume that measurements arrive in scans with 
multiple measurements in each scan, and each measurement in a given scan arrives at exactly the 
same time. The time between scans is assumed constant. 

The above assumptions and equations result in a linear measurement model for the 
processed measurements: 

where Em,k is two-dimensional Gaussian noise with the covariance given by R(m,k). This 
model, combined with the linear state equation above, provide the matrices and assumptions 
required by the Kalman filtering/smoothing algorithms used throughout this research. A somewhat 
inconvenient feature of this approach is that each measurement at each scan time has a different 
measurement covariance matrix. This feature requires some modification to other algorithms, as 
discussed below. 

Most of the results detailed in section 3 below use the debiased conversion measurement 
algorithm given in equations 2.2-2.4. However, some comparison runs were made on the PMHT 
algorithm with a competing Extended Kalman Smoother used in place of the debiased conversion 
processing discussed above. These results are also reported in section 3. 

2.3 Baseline Probabilistic Multi-Hypothesis Tracker Algorithm 

The algorithm is taken from Streit and Luginbuhl [2,3], where the linear Gaussian case is 
assumed for actual targets (Section 5 of [2]). Straight line target motion is assumed for actual 
target tracks, along with the linear measurement model discussed above. 

The baseline algorithm consists of an initialization step, where an initial sequence of target 
state estimates and target measurement probabilities is specified for each target at each measurement 
scan time: 

4 



Here, t specifies the target model (t = 1, ..., M), k specifies the time (k = 0, ..., T), m specifies the 
measurement at time k (m = l,.;.,nd, and the superscript i ( = 0 above for initialization) indicates 
the algorithm iteration number. Also, the matrix P$s the covariance associated with the 

smoothed state estimate $Lfor any iteration i of the PMHT. The values $2 specify the estimated 
probability that a measurement at scan time k is assigned to target model t after i iterations of the 
algorithm. At each iteration, the set of assignment weights is computed using: 

* '  Otg') = N ( Z m , k I ~ ~ ~ 1 , P ~ : i , R m , k )  for a target track, 

O:Fi) = p (an adjustable parameter) for clutter, and 

(2.6) 

(2 .7)  

*(i+l)  
, where (i+U - wt,m,k 

Ot,m,k - M 

s=l 
c @*(i+l) 

s,k s,m,k 

(2.10) 

(2.11) 

The superscript i in these equations is the PMHT iteration index. These weights are used to define 
the updated target measurement probabilities: 

Ail t,k = * i ) d i - l ) ,  Ot,k t,k where . (2.12) 

where nkis the number of measurements in the scan at time k. The centroid measurement is now 
computed using: 

(2.13) 

(2.14) 

These quantities are now used in the standard Kalman smoothing algorithm to generate updated 
estimates for {%$:i} and {Pifl}. The algorithm now iterates until convergence is achieved (up to a 
maximum of 100 iterations in this research). Convergence is achieved when 
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This algorithm differs from the baseline described in Streit and Luginbuhl([2], Section 5 )  
in that each measurement has a distinct covariance matrix. Several variations of the above 
algorithm were also investigated involving the terms Rm,k in equation 2.1 1 and Ria in equation 

2.14. The following alternative computations of R$f$ have been considered: 

(2.16) 

Ri3 = R(rn,k) associated with the measurement closest to the estimated (2.17) 

position of track t at time k. 

Ryilg = the covariance computed using equations 2.3, where r and 4 are 

computed from the estimated position of track t at time k. 
(2. Is) 

Each of these in turn, including the original g3, have been used in equation 2.11 in place of 

Rm,k. Of these methods, the estimated covariance defined in equation 2.18, Rf$, has proved to 
be the most robust and has provided the overall best results. Hence, for most of the data runs 
discussed in section 3 below, the estimate Ri3 has been used in both the Kalman smoothing 

equations and in equation 2.1 1 in place of Rm,k. 
The above algorithm includes a specific model for clutter based on the uniform density, and 

is specified via a clutter density parameter p. Clutter density parameters used in this research were 
in the range of 10-6 to 1 clutter return per square kilometer. The actual clutter densities used in the 
simulations tested here varied in the range of 3.3~10-3 to 6.6~10-2 clutter returns per square 
kilometer. 

2.4 Initialization Algorithm 

The initialization algorithm investigated in this research has been N-of-N, where N has 
varied from 2 to 5. Generally, M-of-N algorithms are used in a variety of realistic, fielded tracking 
systems and remain the most popular in general applications. The PMHT algorithm requires an 
initial state estimate for each track at each measurement time point in the entire trajectory, kio), and 
initialization strategies based on a small number of measurement points at the beginning of a track 
can provide very poor estimates at the end of the'track. Unfortunately, a tracking system built 
to operate in real time must operate under these kinds of constraints. We have concentrated on 
the N-of-N algorithm to establish some bounds on how many initial points are required for the 
algorithm to converge to a meaningful result. 

The initialization algorithm used here can be divided into two distinct computational 
procedures: a gating strategy based on measurement and target speed uncertainty for 2-of-2 
processing, and a least squares algorithm for N-of-N processing when N > 2. The 2-of-2 
algorithm relies on some knowledge of target speed. This research has assumed targets of interest 
move with speeds between 2 and 10 knots. If the target velocity vector is known, and two 
successive measurements, Zk and Zk+l , are obtained for the target, then the quantity 
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has a noncentral chi-squared distribution, where { z k , ~ k }  are the measured track position and 
measurement covariance matrix at time k. It was found empirically that for target speeds 
between 2 and 10 knots and for tracking ranges used in the simulations described in Section 3 that 
a cutoff of ~ 2 5 5 0  kept all target associations. This produces an effective gate for 2-of-2 
association of approximately 75 square kilometers. 

The N-of-N algorithm relies on a least squares fit, assuming a constant velocity target. 
For example, in the 3-of-3 algorithm, the measurements at the first three measurement times are 
given by: 

z(ty 1) = &(t, 1) + Em,l 

z(t,2) = &(t,2) + ~ m , 2  = H[A(A)x(t,l) + w(t,l)] + ~ m , 2  

z(t,3)= =( t ,3 )+  ~ m , 3  = H[A(A)[A(A)XW + w(t,l>] + w(t,2)]+ ~ m , 3  

For convenience, the process errors are set to zero (w(t,k) = 0 for every k ) ,  giving: 

p4iAjA(A)16x4 
where the covariance associated with the error vector is 

I Hence, the least squares estimate of x(m, 1) is given by 

G(t,3) = A(A)G(t,2) = A(A)?(t,l) 

Under the above assumptions, the quantity 

i i ( t ,k)  = E ( t , k )  

(2.20) 

(2.21) 

has a chi-squared distribution with 6 degrees of freedom. The cutoff value for track formation at 
3-of-3 was ~2 < 20, which gives an association probability for measurements derived from a real 
track of 0.9972. The 3-of-3 case also relies on a match using the 2-of-2 algorithm for the first and 
second measurement points and also for the second and third measurement points prior to 
implementing the least squares algorithm. Higher order associations project the 3-of-3 result into 
the future to determine likely measurements for association prior to obtaining the higher order 
least squares estimate. 
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vector is unrealistically large (> 10 knots here), it is scaled back to 10 knots to prevent the 
estimates obtained from projecting the initialized track forward in time from becoming 
unreasonably far from the measurements. 

2.5 Probabilistic Data Association Filter 

The PMHT algorithm was compared with a probabilistic data association filter (PDAF) and 
a standard multi-hypothesis tracking (MHT) algorithm. The PDAF algorithm studied here is a 
standard algorithm as described in Chapter 3 of [4], with a modification to account for a different 
covariance matrix for each measurement. Also, a detection probability of unity is assumed. The 
processing sequence is as follows: 

1) Track initialization using the N-of-N algorithm discussed above. All PDAF simulation 
results discussed below were run with N=3. 

2) Gating. The gating procedure employs a chi-squared statistic computed using the 
current track state estimate and measurement as follows: 

X2 = (Zm,k - ~ k l k - l ) T [ ~ k l k - I H T  -I- RmYkr1(Zm,k  - m k l k - 1 )  (2.22) 
A cutoff value was defined to give an association probability (assuming the measurement actually 
arises from the constant speed track) of 0.995. All measurements that gate with a track play a role 
in track updating. 

3) Scoring the Association. For each measurement passing the above gate, a score is 
computed as follows: 

* 
@m,k om,k  = 'c, where 

@m,k 
m 

(2.23) 

= N ( z m , k l ~ k 7 P k , R m , k )  
Here, these quantities are as defined in section 2.2 above, with the denominator sum taken over all 
measurements that gate with the track. There are no iteration cycles for the PDAF, so there are no 
superscripts. Also, the dependence on the track model has been supressed because only one target 
track was studied using the PDAF. 

4) Producing the updated state estimate. The updated state estimate is a linear combination 
of the standard Kalman update estimates for each measurement that gates with the track. The 
coefficients are the u m , k  : 

'k lk  = c @m,k'm,klk 
m 

5) The covariance update is as follows: 

(2.24) 

'klk = [ m @m,k( 'm,klk + KGm,$m,k%,kKG$,k)) - 'klk'zk ' where (2'25) 

Pm,klk is the Standard Kalman Covariance Update for the m* Measurement, 

KGm,, is the Associated Kalman Gain for the mth Measurement, and 

m 
These equations, along with the standard Kalman prediction and update equations, complete the 
PDAF algorithm. 
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2.6 Multi-Hypothesis Tracking Algorithm 

The MHT algorithm used here is based on Reid‘s measurement-oriented paradigm [5]. 
This algorithm has been widely discussed, and appears in several texts (e.g., Chapter 6 of [4] and 
Chapters 10 and 14 of [6]). As implemented here, target motion and measurement models are as 
discussed above (equations 2.1 and 2.2). The purpose of the MHT algorithm is to enumerate as 
many of the possible measurement-to-track association possibilities as is feasible, given finite 
processing time and computer memory. 

A hypothesis consists of a collection of tracks together with an overall hypothesis score. 
To explain the algorithm and define the terms used here, consider the following example. Suppose 
that prior to the current scan time there is a single hypothesis in the system, consisting of a single 
track plus an additional measurement designated as clutter, along with the score for the hypothesis. 
Suppose further that the current scan consists of two measurements. Measurements are processed 
sequentially. The processing steps associated with the MHT are as follows: 

1) The first measurement is compared with the predicted track position, and a chi-squared 
gate is used to exclude poor associations. The technique is the same as is used in gating for the 
PDAF. 

2) If the measurement gates with the track, a new hypothesis is generated consisting of a 
new track (obtained by updating the previous track with the new measurement and assigning a new 
track number) and the original clutter measurement. All updates use a standard Kalman filter 
algorithm. The hypothesis score generated for the new hypothesis consists of the old hypothesis 
score multiplied by the score associated with this association. This score is computed as: 

T 1 
Exp[-:(zm,k -Hhk-l)  [ m k l k - l H ~  + R r n q  (zm,k - =klk-l)l 

(2.26) 
(WI[ HPkik-iHT + Rm,x]P/’ 

if the track in question has been constructed from more than one measurement point prior to being 
updated with this measurement. For a track that consists of only one measurement point, the 
multiplying factor is taken from the value of the emipirical distribution constructed from simulating 
2-of-2 measurement associations on tracks moving with arbitrary headings at speeds between 2 
and 10 knots (see section 2.4 above). 

3) The measurement also generates a new hypothesis based on the new measurement being 
a new track. In this case the multiplying factor for the new hypothesis score is an adjustable 
parameter that represents the score for a new track. In practice this new track score factor is tuned 
.for best results. 

4) Finally, the measurement generates a new hypothesis based on the new measurement 
being an additional clutter point. The multiplying factor in this case is another parameter 
representing the score for clutter. As with the new track score factor, this clutter score parameter is 
tuned for best results. 

5 )  At this point either two or three new hypotheses have been generated from the original 
hypothesis, depending on whether or not the measurement gated with the track. More tracks in the 
original hypothesis would have generated more possibilities. The scores for the new hypotheses 
are then normalized so that the top scoring hypothesis has a score of 1, with the other hypotheses 
scaled accordingly. Should the number of hypotheses exceed the maximum allowable number, 
‘lower scoring hypotheses are discarded and tracks that only appear in these discarded hypotheses 
are erased. 

6) Now the second measurement in the scan can be processed, and the same procedure is 
followed for each of the existing hypotheses, with the following modification: the measurement 
may not gate with a track that has been created or updated during earlier processing in this scan 
(precluding the possibility of multiple measurements from the same target in a single scan). 

The above outline specifies the overall outline of MHT processing. This MHT algorithm 
has no cluster processing. In addition, the algorithm prevents tracks that have not received a 
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measurement association for three scan cycles from being updated, although such tracks are not 
erased from the track list. 

2.7 Attribute Data Processing 

This year's research effort concluded with a study on the use of attribute data in the PMHT 
algorithm. The attribute study assumed that a measure of target amplitude was available to the 
processing algorithm in addition to the range-bearing measurement. The measured amplitude was 
drawn from a Rayleigh distribution with specified mean. The Rayleigh distribution has the form: 

(2.26) 

with mean value given by a w .  Here, target and clutter measurements were assigned different 
means. The clutter model used a = 1, while the target model used a > 1, where several values 
were tested. The inclusion of attribute data in the PMHT consisted of adjusting the weights found 
in equations 2.6 and 2.7: 

(2.27) 

(2.28) 

*(i+l) - 
*(i+l) - 

@t,m,k - f ( G n , k ) N ( z m , k l ~ j ~ i ~  p:fi9 Rrn,k) for a target track, 

@t,m,k - Pf ( a m , k )  for clutter. 

where am,k is the attribute portion of measurement m at time k. In this year's research, attribute 
data was only studied in conjunction with the PMHT. Generally, attribute data in our simulation 
results had only marginal effect for target values below a = 0, representing an order of 
magnitude difference in the power level between targets and clutter. 

3. Simulation and Results 

All of our comparison studies were performed using simulated data. An example 
simulation run is presented in Figure 1. Here, actual target motion is along the straight line 
moving fiom upper left to lower right in the figure. Thirty target range-bearing measurements are 
generated using additive, Gaussian noise, where the range standard deviation is 100 meters and 
the bearing standard deviation is 3 degrees. The sensor is located at (O,O), so the target is moving 
predominantly in the cross-range dimension at ranges beyond 30 kilometers with respect to the 
sensor in the scenario depicted in this figure. Target measurements are pictured in the figure 
using "*" symbols, while clutter appears as circles. Scans of data are generated every 4 minutes 
for two hours. Actual target motion is 5 knots in all scenarios. For the scenario depicted here, 
there are 5 clutter measurements and 1 target measurement generated at each measurement scan. 
This corresponds to a clutter density of 1.67~10-2 clutter points per square kilometer. Target 
probability of detection was assumed to be 1 throughout all testing detailed in this report. 
Clutter densities were varied fiom a low of 3.33~10-3 to a high of 6.67~10-2 clutter points per 
square kilometer in these studies. 

3.1 PMHT Implementation and Results 

Algorithm testing began using three target motion geometries and low clutter. These 
geometries were: a single track moving in a straight line with constant velocity, two crossing 
tracks moving in straight lines with constant velocity, and a track that performs a turn half way 
through the scenario, generating two straight line segments. Algorithm testing and adjustments 
continued until reasonable convergence results were obtained on the single non-maneuvering track 
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scenario and the crossing track scenario at clutter densities of 1.67~10-2 clutter points per square 
kilometer (as depicted in Figure 1). 

The PMHT algorithm modifications used to obtain these convergence results consist of 
the following: 

1) Equation 2.18 is used for the measurement covariance matrix. Other 
implementations of the debiased conversion covariance matrices (i-e., the use of 
equations 2.14,2.16 or 2.17) produced inferior or unsatisfactory results. 
N-of-N Initialization was used, where N=5. Values of N=2,3, and 4 were also 
tried, bqt results were not satisfactory. 
Measurements beyond the Chi-squared cutoff value of 0.995 from the estimated 
track position at each scan time have their scores set to a low constant value of 

rather than using the actual score generated by equation 2.9. 
PMHT processing proceeds by batch processing an additional increment of five 
scans of data at a time. The initial track estimates for the incoming set of 
five data scans is obtained by predicting the results of the previous converged 
track estimates into the future. Then the algorithm runs on all data beginning at 
time zero up through the new data, iterating until convergence, equation 2.15, is 
obtained (or the maximum number of 100 iterations is exceeded). This process 
continues until all data scans have been processed. 
A 10 knot maximum speed is imposed when predicting the initial track estimates 
for the next 5 data scans. The actual target estimates generated at algorithm 
convergence have no speed limitations. 
For the straight tracks, the plant noise parameter q (section 2.1) is set to 1. For 
the maneuvering track q was set to values up to 1000, but the algorithm was still 
ineffective (as was the PDAF). 

2) 

3) 

4) 

5 )  

6) 

Figure 2 shows a typical convergence result obtained for the PMHT algorithm on a single 
straight-line track. Here, circles are actual target positions at each measurement time, and "*" 
symbols are the converged smooth estimates of target position. Clutter density for this scenario 
is 1 .67~10~2 clutter points per square kilometer. Note that the true target trajectory is aligned 
well with the estimates, but the converged estimates are at a slower speed than the actual target. 

Figure 3 shows a typical convergence result for the PMHT algorithm on crossing targets. 
Here, the crossing track from lower left to upper right is closely aligned with a bearing line fiom 
the sensor, while the other track from upper left to lower right is along the cross-range dimension 
as before. Clutter density is again 1.67~10-2 clutter points per square kilometer. Some alignment 
and velocity discrepancies are evident from the figure. 

Figure 4 shows a typical convergence result for the PMHT algorithm on the maneuvering 
track. Actual track positions (circles) proceed from upper left to center right in the cross-range 
dimension, when the maneuver occurs. The target then proceeds down to the lower left. The 
converged estimate ("*" symbols) clearly loses the target at the turn, and special processing will 
be required to track through a sharp maneuver. 

In order to quantify our results, mean distance errors were computed for the final 
converged target position estimates at each scan time. Means were taken over 100 simulation 
runs. The crossing track scenario was investigated first, and the mean position error results for 
this scenario are reported in Figure 5. This figure shows 4 curves. The lowest curve is the result 
of running the Kalman smoother using the actual target measurements (i.e., no clutter) and taking 
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mean distance errors, where the mean is computed over 1000 simulations. Hence, this curve 
represents a theoretical minimum for algorithm performance in the absence of clutter. The 
highest and most irregular curve is generated by taking the mean distance between the target 
measurements and true target positions, again with means generated over 1000 simulations. 
Hence, this curve represents the performance of the unfiltered measurements in the absence of 
clutter. These two curves represent operating bounds for the actual algorithm, which cannot 
achieve the lower curve due to the interference of clutter and is not very useful as a target locator 
if it strays too far above the upper curve. The two middle curves represent mean distance errors 
generated over 100 simulation runs by the PMHT algorithm. The lower of these two curves 
(marked by "*" symbols) corresponds to errors with respect to the bearing line target (from 
lower left to upper right in figure 3). The upper of the two middle curves (marked by "X" 
symbols) is for the cross-range target. Hence, the cross-range target is the more difficult target in 
this scenario, although both sets of distance errors are comfortably inside the raw measurement 
error. 

The above results were obtained at a clutter density of 1.67~10'2 clutter points per 
square kilometer. If the clutter density is doubled, results are much worse, as shown by the 
distance error curves depicted in Figure 6. Again, mean distance errors have been computed over 
100 simulation m s ,  and again the cross-range target generates much poorer position estimates. 
Hence, the cross-range target motion appears to be the most affected by clutter. Therefore most 
of our effort has been focused on the cross-range target geometry. 

Figure 7 depicts actual target positions and measured positions for this geometry, where 
measurements are connected via line segments to illustrate the relative volatility being generated 
by the 3 degrees of measurement error at these ranges. Study of outliers (scenarios where fulal 
convergence results were above the measurement error line at the final measurement time) 
indicated that while the 5-of-5 initialization procedure tended to prevent track estimates from 
going off at large angles to the actual target motion, final velocity estimates were often too fast, 
even with the 10 knot limit. Figure 8 depicts a typical outlier convergence result. Hence, we 
adjusted our 10 knot limit down to 2 knots. This means that the initial target speed estimate 
used to initialize the next five data points for the PMHT at the beginning of processing each new 
batch of 5 scans of data was set to a maximum of 2 knots for predicting the initial estimates (item 
# 5 in our list of PMHT modifications given above). The final speed could, however, settle out 
to any value. The results of this change, along with subsequent modifications to the PMHT, are 
reported in the comparative performance section (section 3.3) below. 

3.2 MHT Implementation 

The MHT processing algorithm is discussed in section 2.6 above. Here, specific aspects 
of the algorithm that affect the way it is to be compared with other algorithms are discussed. 
First, in comparing distances between actual target positions and estimated positions, there is the 
issue of which track in the MHT track list should be used for the comparison. We have chosen 
two tracks from the track list as indicative of MHT tracking performance. The first track is the 
"established" track in the current top scoring hypothesis that is closest to the current target 
position. By "established" we mean a track that includes at least N measurement points to 
prevent short, spurious tracks from giving a false sense of this error. In this research we have 
chosen N=3 to match the start-up criterion for the PDAF algorithm we have implemented. This 
track will be referred to as the top hypothesis track. 
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A second track from the MHT track list that is logical to use for comparison is the track 
containing the most true target points. In our simulations, measurements generated fiom target 
positions are numbered beginning fiom 1 and going as high as 60, for scenarios that feature two 
targets. Measurements generated as clutter, however, are numbered beginning fiom 10 1 and going 
as high as required. Hence, although none of our processing algorithms use this information in 
creating or updating tracks, it is possible to know how many actual target points appear in any 
track by noting the measurement numbers. This track, the one with the most actual target 
measurements, is referred to as the best track, even though it may not appear in the top scoring 
hypothesis. 

A sample track list generated fiom a scenario run consisting of a single, non-maneuvering 
target track is depicted in Table 1. This table was the final table generated during the scenario, so 
it represents a snapshot at the end of processing all measurement scans. Also present in the 
track table, but suppressed in these displays, is the current state and covariance estimates for 
each track in the table. In this table, track #413 is the best track. It contains 30 total 
measurements (column 2), and all 30 of those measurements are fiom the actual target (column 3). 
The first three measurements in this track have ID numbers 1,2, and 3 (columns 4, 5 ,  and 6), 
indicating that it originated from the first three target measurements. The last update time for 
this track was 116 seconds into the scenario (column 7), which was the last measurement scan 
time in the scenario. 

Table 1: Exemplar Track Table Generated by the MHT Algorithm for a Single Track 

Table 1 illustrates some of the shortcomings of our current MHT processing. First, there 
is no track delete unless all hypotheses containing a given track are themselves deleted. Hence, 
tracks represented in the first five rows of Table 1 remain in the table even though they have not 
been updated since they were formed during the processing of the first measurement scan. Old 
tracks are prevented fiom updating with new measurements once they have failed to update 
during two consecutive measurement scan cycles, but they are not deleted. This feature has some 
usefulness in a research environment, as will become evident in our discussion of Table 2 below, 
but it would not be present in a fielded system. 
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The second shortcoming is our lack of a track merge feature. The last eight tracks 
depicted in Table 1 are all essentially the same track, with one or two minor measurement 
substitutions. These tracks are all active throughout the entire scenario, and they could 
potentially clog both the hypothesis list and the track list, detracting from both algorithm 
efficiency and tracking performance. Here we have the luxury of carrying a large number of 
hypotheses because we are not operating in real time, and keeping all such tracks gives us an 
accurate count of the maximum number of actual target measurements that can be associated 
together by the MHT algorithm at various clutter levels. However, a track merging algorithm 
would be a requirement for any fielded system. 

Figure 9 shows a graph of the minimum, maximun and average number of target points in 
the best track, where these statistics are computed over 100 simulation runs. The clutter was at a 
moderate density of 1.67~10-2 clutter points per square kilometer. Since there are a maximum of 
30 target measurement points, the upper curve in the figure demonstrates that in at least 1 of the 
100 simulation runs all target points were associated into one track. The middle curve indicates 
that the average number of target points in the best track was 24. The bottom curve indicates 
that the minimm number of actual target measurements associated into the best track at the end 
of the scenario was 11 target points. 

Figure 10 shows a graph of the mean distance error between the actual target location and 
the MHT track estimate for both the top hypothesis track ("0" symbols) and the best track ("*" 
symbols). Mean errors are taken over 100 simulation runs with the clutter density given above. 
Here the best track tends to give better results, but they are both virtually identical at the end of 
the scenario. 

Table 2: Exemplar Track Table Generated by the MHT Algorithm for a Single Track 
Scenario with a Turn 

We also explored the maneuvering track scenario using the MHT. In this case the target 
maneuvers, as shown in figure 4 above. An exemplar track table is presented in Table 2, where 
the track table is taken at the end of the scenario. Here, the first 12 tracks have ceased to update, 
and only the last 2 tracks are still viable at the end of the scenario, and these two are essentially 
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the same track. Track 24 initiated from the first 3 target measurements (columns 4-6), but failed 
to update thereafter. Track 2 13 initiated with track measurement 9 and updated 9 more times 
before it died out. Six of its measurements are actual target measurements (column 3), making it 
the longest surviving track prior to the maneuver, which occurred with target measurement 16,60 
seconds into the scenario. Hence track 213 is the best track shown in the table prior to the 
maneuver. After the maneuver the target was reacquired by tracks 329 and 330 at target 
measurement 19,72 seconds into the scenario. These tracks remained locked onto the target until 
the end of the scenario. Track 329 ended up with 12 target measurements, making it the best 
track pictured in this simulation run. 

Figure 11 gives the average number of target points in the best track for this maneuvering 
track scenario. This graph shows that a maximum of 18 target points appear in any of the best 
tracks in the 100 simulation runs. Such a track would be initiated with the first target point and 
continue through point 16, when the maneuver occurs. Two additional points would be added 
before the maneuver takes subsequent measurements out of reasonable gating range. Thereafter, 
the target would have to be reacquired by starting another track. The average number of target 
points in the best track for this scenario is around 14, and the shape of the middle curve in the 
figure indicates that these tracks are produced by tracks initiated early in the scenario, not during 
or after the turn. 

Figure 12 gives the average number of target measurement points in the best track for 
tracks initialized both before and after the turn. The upper curve is the same as the middle curve 
in figure 11 above, and gives the mean number of target measurements in tracks initialized prior to 
the maneuver. The lower curve shows that the average number of target points appearing in the 
best track initialized at the 56 second mark in the scenario or later is 11 by the end of the 
scenario. Hence, reacquisition is not as fast as was original acquisition for the target track, but 
reacquisition does occur. 

Figure 13 shows the mean distance errors using the MHT for the maneuvering track 
scenario. Again, both the top hypothesis track ("0" symbols) and the best track (I1*" symbols) 
are shown. Mean errors are taken over 100 simulation runs with the clutter density given above. 
Here the best track performs best prior to the maneuver, but the top hypothesis track performs 
best following the maneuver. 

The actual setup parameters used for the MHT in this research were chosen to permit the 
reacquisition of the target following the maneuver in the maneuveridg target scenario. These same 
parameters were then used to produce the results given above and the results given in the 
comparative performance section below. 

3.3 Comparative Algorithm Performance 

The algorithms were compared directly using the equations and techniques described n 
the sections above, with mean distance errors as the performance measure. All means were 
computed over 100 simulation runs. Figure 14 shows the comparative distance errors for the 
various algorithms on a single straight track scenario, where the clutter density is 1 . 6 7 ~ 1 0 ' ~  
clutter points per square kilometer. Among these algorithms, only the PMHT uses a smoothed 
estimate, and its performance should be superior at all except the last data point in the scenario 
because at other points the PMHT is using more data than the other algorithms. In this figure the 
lowest curve at the right hand side of the graph is the smoothed estimate, taken over 1000 
simulation runs, using actual target measurements only. The highest curve is the mean 
measurement error using target measurements only, again taken over 1000 runs. These curve 
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duplicate the curves given in figures 5 and 6, section 3.1 above. For th is straight-line track 
scenario at this clutter density, the PMHT algorithm ("*" symbol) performed as well as the two 
track types generated by the MHT ("o'~ for best track and "+" for top hypothesis track). The 
PDAF ("x" symbol) and the nearest neighbor tracker (dashed line), were poorer performers 
overall, although all algorithms performed better than the raw target measurements themselves, 
even though the algorithms had to deal with clutter. 

Figure 15 demonstrates the effect of doubling the clutter density. Here; the nearest 
neighbor tracker has been dropped. Note that the PMHT is now out-performed by both tracks 
associated with the MHT, but it still performs better than the PDAF. 

Figure 16 shows the effect of these algorithms on the turning track scenario. Here it is 
clear that only the MHT has the capability to reacquire the track after the maneuver. The results 
given in figures 14, 15, and 16 were reported at the Asilomar Conference in November of this 
year. 

3.3.1 Algorithm Shortcomings and Improvements 

Unfortunately, the modified PMHT algorithm used to obtain the above comparative 
results proved unacceptable when used on the crossing track scenario. In this instance, the track 
moving along the bearing line of the sensor, which had proved to be the easier of the two tracks to 
estimate (as reported in figures 5 and 6, section 3.1 above), was no longer giving reasonable 
convergence results. The algorithm had been changed to initialize future estimates at a speed of 2 
knots (section 3.1 above), and this low limit was causing havoc with the convergence of the 
bearing line target track, whether it was being measured in the crossing track scenario or by itself. 
This led us to revisit some fimdamental aspects of the algorithm and our modifications to it. 

We identified three areas where improvements might be made. The frrst of these was the 
use of the debiased conversion measurements and the corresponding problems we had earlier with 
the covariance estimate. Here, we decided to explore the Extended Kalman Smoother (EKS) 
algorithm in lieu of the debiased conversion. The second of these was a revisit of the earlier 
concept of covariance deflation. The third was to examine the method we were using to limit the 
speed for initializing the PMHT. 

The results of the EKS study is summarized in Figure 17. The curves in this figure 
represent means of 500 simulation runs on the cross-be,aring track scenario, where the clutter 
density is 3.3~10'2 clutter points per square kilometer. Here, the solid line on the graph 
represents the debiased conversion algorithm that we have been running up to this time. The 
tolerance for convergence for the debiased conversion measurements was 10-4 (equation 2.19, as 
has been the case throughout our earlier runs. These 500 debiased conversion simulation runs 
took 738 minutes to complete, and there were 74 cases where the algorithm did not converge to a 
final estimate that was less than the mean measurement error. The dashed line on the graph 
represents the EKS algorithm results on 500 simulation runs at the same tolerance for 
convergence, 10-4. This EKS algorithm took only 242 minutes to complete, and there were only 
68 cases where the algorithm did not converge to a final estimate that was less than the mean 
measurement error. Because the EKS ran so much more quickly than the debiased conversion 
algorithm, we tested this algorithm for convergence at the more stringent tolerance of This 
is reported in the dash-dot curve in figure 17. Here, the EKS algorithm completed the 500 
simulation runs in 240 minutes with only 57 cases where the final estimate exceeded the mean 
measurement error. A further refinement of the tolerance to 10-10 did not improve EKS 
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performance. It is clear from these curves and statistics that the EKS at the more exacting 
tolerance of gives comparable performance at a much faster convergence rate. Hence, we 
have modified our processing to use the EKS at a tolerance of 10-8. 

Further testing of the covariance deflation strategy was not productive. As implemented 
here, the measurement covariance was initially inflated by a factor of 3 for the frrst iteration of 
the algorithm, then by a factor of 2 for the second iteration, and finally by a factor of 1 for the 
third and all succeeding iterations. Figure 18 shows the comparative results between this 
covariance deflation algorithm and the standard PMHT. Here, the line with circles is the standard 
algorithm and the dashed line is the covariance deflation algorithm, mean values being taken over 
100 simulation runs. Other variations of this technique were similarly unimpressive. 

Finally, we reexamined our method for limiting the speed of the target for algorithm 
initiation. It was fundamentally unaesthetic to limit the target to 2 knots when the estimated 
speeds of interest are between 2 and 10 knots, even when the algorithm is free to subsequently 
raise the speed. Hence, we decided to find a way to use the more justifiable 10 knot limit. We 
selected a baseline state estimate and measurement time to use in beginning our initialization for 
the next batch of 5 measurement scans. This baseline was chosen to be the most current scan 
time and the most current state estimate. If this state estimate had a speed in excess of 10 knots, 
then the velocity of the baseline state estimate was reduced to reflect a speed of 10 knots. Then 
state estimates at both past and future times were generated from the adjusted baseline state with 
its new velocity vector. These estimates were then used to initialize the algorithm for the next 
round of batch processing. Hence, the algorithm is still permitted to produce a final track 
estimate with any speed, but the initial estimate is speed bounded at every initial state vector. 
This algorithm has proved to work quite well. 

Figures 19 and 20 repeat figures 14 and 15 with the EKS processing and speed 
initialization procedures discussed above used to modifl the PMHT algorithm. (In these two 
figures the mean results for the revised PMHT are taken over 500 simulation runs. Other 
algorithm results are taken over 100 simulation runs, as before.) Now we note that the revised 
PMHT is slightly better than the MHT at low clutter densities, but still not as good as the 
clutter density increases. Figure 21 repeats Figure 6 with this modified PMHT acting on crossing 
tracks, yielding much better results. 

3.4 Attribute Processing Results 

Attribute information processing was explored using the equations detailed in section 2.7 
above. We first set out to determine what ratio of targetklutter amplitudes would enhance the 
baseline PMHT results. This was done by fixing the parameter a for clutter in the Rayleigh 
distribution, equation 2.26, at 1 and varying the parameter for target measurements. Values 
explored for targets were: 1 , f i , 2 , f i ,  and m, corresponding to power ratios of OdB, 3dB, 6dB, 
lOdB, and 13dB. Figure 22 gives mean estimation errors using attribute processing. Mean values 
are taken over 100 simulation runs, where the clutter density is 3.3~10-2 clutter points per 
square kilometer. Here, the dash-dot line is the standard PMHT without attribute data. The 
curves indicated by "of' (OdB), "+" (3dB), and "x" (6dB) actually show a degradation in 
performance, while the curves indicated by "*" (10dB) and dashes (13dB) indicate performance 
improvement. Hence, it seems clear that a minimum power ratio of lOdB is required for 
reasonable results. 

Figure 23 shows the effect of varying the initialization constant, N in N-of-N, using the 
new attribute data, where a lOdB power ratio is used throughout. Again, the dash-dot curve is 
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the standard PMHT with no attribute data and N=5. The curve designated by circles is with N = 
3, the "+'' curve is N=4, and the "*" curve is N=5. The clutter density is 1 . 6 7 ~ 1 0 ~ ~  clutter 
points per square kilometer. Here, the attribute data gives similar results at N=3 as is obtained 
without any attribute processing and N=5. 

Figure 24 again shows the effect of varying the initialization constant, where the clutter 
density has been doubled over the level used in figure 23. Here we fmd that attribute processing 
(1OdB) with N=3 (circles) is not as good as no attribute processing and N=5 (dash-dot curve). 
However, attribute processing (1 OdB) and N=5 shows superior results. Therefore, at higher 
clutter levels it is not possible to reduce N and make up the difference with lOdB of attribute 
information, which indicates that the PMHT algorithm is quite sensitive to its initialization 
routine. 

4. Conclusions 

This research has demonstrated that the PMHT algorithm is a viable candidate in the data 
association and tracking arena. It has proven to be superior to the PDAF in the scenarios 
examined here, and has outperformed the MHT in low clutter, although it is not as good as the 
MHT in higher clutter. The baseline PMHT algorithm will not track through a target maneuver, 
but most algorithms designed to operate in clutter require special processing to track a target 
through a turn. (Usually this entails reacquiring the target on its new course and linking the two 
tracks.) Hence, this is not a glaring weakness. Furthermore, the algorithm is easily modified to 
accept attribute data, although a 1 OdB signal-to-clutter power ratio is rather high. 

Algorithm initialization remains an area of concern, as N=5 is a rather stringent criterion, 
especially when scenarios with Pd < 1 are included. Unfortunately, the a€gorithm seems to be 
quite sensitive to changes in initialization when this initialization must be based on time-ordered 
measurements, as is the normal processing case for a real-time, fielded system. 

Clearly, more work needs to be done on initialization, on additional processing to track 
through turns, and on developing additional strategies for employing attribute data to increase its 
impact on algorithm performance. 
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04 FIGURE 1 : Truth, Measurements and Clutter for Straight Track - 5c 
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Figure 3: Truth and PMHT Estimates for Crossing Tracks - 5c x lo4 
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Figure 6: Mean PMHT Distance Errors for Crossing Tracks - 1Oc 
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Figure 10: Mean MHT Distance Errors 
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Figure 1 1 : Min, Max, and Mean # Target Points in Best Track Prior to Turn 
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Figure 12: Mean # Target Points in Best Tracks Before and After Turn 
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Figure 13: Mean Distance Errors for Turning Tracks - 5c 
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Figure 14: Algorithm Comparisons on Straight Track - 5c 
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Figure 15: Algorithm Comparisons on Straight Track - 1 Oc 
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Figure 20: Algorithm Comparisons on Straight Track - 1 Oc 
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Figure 21 : Mean Distance Errors for Crossing Tracks with Revised PMHT - 1 Oc 
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Figure 22: Mean Distance Errors for PMHT with Attribute Data - 1Oc 
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Figure 23: Mean Distance Errors with Attribute Data and Varying N-init - 5c 
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Figure 24: Mean Distance Errors with Attribute Data and Varying N-init - 1 Oc 
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