3,219 research outputs found
Tide-surge interaction in the English Channel
The English Channel is characterised by strong tidal currents and a wide tidal range, such that their influence on surges is expected to be non-negligible. In order to better assess storm surges in this zone, tide-surge interactions are investigated. A preliminary data analysis on hourly surges indicates some preferential times of occurrence of large storm surges at rising tide, especially in Dunkerque. To examine this further, a numerical modelling approach is chosen, based on the 2DH shallow-water model (MARS). The surges are computed both with and without tide interaction. For the two selected events (the November 2007 North Sea and March 2008 Atlantic storms), it appears that the instantaneous tide-surge interaction is seen to be non-negligible in the eastern half of the English Channel, reaching values of 74 cm (i.e. 50% of the same event maximal storm surge) in the Dover Strait for the studied cases. This interaction decreases in westerly direction. In the risk-analysis community in France, extreme water levels have been determined assuming skew surges and tide as independent. The same hydrodynamic model is used to investigate this dependence in the English Channel. Simple computations are performed with the same meteorological forcing, while varying the tidal amplitude, and the skew surge differences <i>D</i><sub>SS</sub> are analysed. Skew surges appear to be tide-dependent, with negligible values of <i>D</i><sub>SS</sub> (<0.05 m) over a large portion of the English Channel, although reaching several tens of centimetres in some locations (e.g. the Isle of Wight and Dover Strait)
Experimental study of super-rotation in a magnetostrophic spherical Couette flow
We report measurements of electric potentials at the surface of a spherical
container of liquid sodium in which a magnetized inner core is differentially
rotating. The azimuthal angular velocities inferred from these potentials
reveal a strong super-rotation of the liquid sodium in the equatorial region,
for small differential rotation. Super-rotation was observed in numerical
simulations by Dormy et al. [1]. We find that the latitudinal variation of the
electric potentials in our experiments differs markedly from the predictions of
a similar numerical model, suggesting that some of the assumptions used in the
model - steadiness, equatorial symmetry, and linear treatment for the evolution
of both the magnetic and velocity fields - are violated in the experiments. In
addition, radial velocity measurements, using ultrasonic Doppler velocimetry,
provide evidence of oscillatory motion near the outer sphere at low latitude:
it is viewed as the signature of an instability of the super-rotating region
Compliance error compensation in robotic-based milling
The paper deals with the problem of compliance errors compensation in
robotic-based milling. Contrary to previous works that assume that the
forces/torques generated by the manufacturing process are constant, the
interaction between the milling tool and the workpiece is modeled in details.
It takes into account the tool geometry, the number of teeth, the feed rate,
the spindle rotation speed and the properties of the material to be processed.
Due to high level of the disturbing forces/torques, the developed compensation
technique is based on the non-linear stiffness model that allows us to modify
the target trajectory taking into account nonlinearities and to avoid the
chattering effect. Illustrative example is presented that deals with
robotic-based milling of aluminum alloy
SST-GATE: A dual mirror telescope for the Cherenkov Telescope Array
The Cherenkov Telescope Array (CTA) will be the world's first open
observatory for very high energy gamma-rays. Around a hundred telescopes of
different sizes will be used to detect the Cherenkov light that results from
gamma-ray induced air showers in the atmosphere. Amongst them, a large number
of Small Size Telescopes (SST), with a diameter of about 4 m, will assure an
unprecedented coverage of the high energy end of the electromagnetic spectrum
(above ~1TeV to beyond 100 TeV) and will open up a new window on the
non-thermal sky. Several concepts for the SST design are currently being
investigated with the aim of combining a large field of view (~9 degrees) with
a good resolution of the shower images, as well as minimizing costs. These
include a Davies-Cotton configuration with a Geiger-mode avalanche photodiode
(GAPD) based camera, as pioneered by FACT, and a novel and as yet untested
design based on the Schwarzschild-Couder configuration, which uses a secondary
mirror to reduce the plate-scale and to allow for a wide field of view with a
light-weight camera, e.g. using GAPDs or multi-anode photomultipliers. One
objective of the GATE (Gamma-ray Telescope Elements) programme is to build one
of the first Schwarzschild-Couder prototypes and to evaluate its performance.
The construction of the SST-GATE prototype on the campus of the Paris
Observatory in Meudon is under way. We report on the current status of the
project and provide details of the opto-mechanical design of the prototype, the
development of its control software, and simulations of its expected
performance.Comment: In Proceedings of the 33rd International Cosmic Ray Conference
(ICRC2013), Rio de Janeiro (Brazil). All CTA contributions at arXiv:1307.223
A Detailed Study of the Radio--FIR Correlation in NGC6946 with Herschel-PACS/SPIRE from KINGFISH
We derive the distribution of the synchrotron spectral index across NGC6946
and investigate the correlation between the radio continuum (synchrotron) and
far-infrared (FIR) emission using the KINGFISH Herschel PACS and SPIRE data.
The radio--FIR correlation is studied as a function of star formation rate,
magnetic field strength, radiation field strength, and the total gas surface
brightness. The synchrotron emission follows both star-forming regions and the
so-called magnetic arms present in the inter-arm regions. The synchrotron
spectral index is steepest along the magnetic arms (), while
it is flat in places of giant H{\sc ii} regions and in the center of the galaxy
(). The map of provides an observational
evidence for aging and energy loss of cosmic ray electrons propagating in the
disk of the galaxy. Variations in the synchrotron--FIR correlation across the
galaxy are shown to be a function of both star formation and magnetic fields.
We find that the synchrotron emission correlates better with cold rather than
with warm dust emission, when the interstellar radiation field is the main
heating source of dust. The synchrotron--FIR correlation suggests a coupling
between the magnetic field and the gas density. NGC6946 shows a power-law
behavior between the total (turbulent) magnetic field strength B and the star
formation rate surface density with an index of
0.14\,(0.16)0.01. This indicates an efficient production of the turbulent
magnetic field with the increasing gas turbulence expected in actively star
forming regions. The scale-by-scale analysis of the synchrotron--FIR
correlation indicates that the ISM affects the propagation of old/diffused
cosmic ray electrons, resulting in a diffusion coefficient of \,cm\,s for 2.2\,GeV CREs.Comment: 23 pages, 13 figures, accepted for publication in Astronomy &
Astrophysics Journa
The LAOG-Planet Imaging Surveys
With the development of high contrast imaging techniques and infrared
detectors, vast efforts have been devoted during the past decade to detect and
characterize lighter, cooler and closer companions to nearby stars, and
ultimately image new planetary systems. Complementary to other observing
techniques (radial velocity, transit, micro-lensing, pulsar-timing), this
approach has opened a new astrophysical window to study the physical properties
and the formation mechanisms of brown dwarfs and planets. I here will briefly
present the observing challenge, the different observing techniques, strategies
and samples of current exoplanet imaging searches that have been selected in
the context of the LAOG-Planet Imaging Surveys. I will finally describe the
most recent results that led to the discovery of giant planets probably formed
like the ones of our solar system, offering exciting and attractive
perspectives for the future generation of deep imaging instruments.Comment: 6 pages, 5 figures, Invited talk of "Exoplanets and disks: their
formation and diversity" conference, 9-12 March 200
Quasiperiodic spin-orbit motion and spin tunes in storage rings
We present an in-depth analysis of the concept of spin precession frequency
for integrable orbital motion in storage rings. Spin motion on the periodic
closed orbit of a storage ring can be analyzed in terms of the Floquet theorem
for equations of motion with periodic parameters and a spin precession
frequency emerges in a Floquet exponent as an additional frequency of the
system. To define a spin precession frequency on nonperiodic synchro-betatron
orbits we exploit the important concept of quasiperiodicity. This allows a
generalization of the Floquet theorem so that a spin precession frequency can
be defined in this case too. This frequency appears in a Floquet-like exponent
as an additional frequency in the system in analogy with the case of motion on
the closed orbit. These circumstances lead naturally to the definition of the
uniform precession rate and a definition of spin tune. A spin tune is a uniform
precession rate obtained when certain conditions are fulfilled. Having defined
spin tune we define spin-orbit resonance on synchro--betatron orbits and
examine its consequences. We give conditions for the existence of uniform
precession rates and spin tunes (e.g. where small divisors are controlled by
applying a Diophantine condition) and illustrate the various aspects of our
description with several examples. The formalism also suggests the use of
spectral analysis to ``measure'' spin tune during computer simulations of spin
motion on synchro-betatron orbits.Comment: 62 pages, 1 figure. A slight extension of the published versio
Recommended from our members
Mapping far-IR emission from the central kiloparsec of NGC 1097
Using photometry of NGC 1097 from the Herschel PACS (Photodetector Array Camera and Spectrometer) instrument, we study the resolved properties of thermal dust continuum emission from a circumnuclear starburst ring with a radius ~900 pc. These observations are the first to resolve the structure of a circumnuclear ring at wavelengths that probe the peak (i.e. λ ~ 100 μm) of the dust spectral energy distribution. The ring dominates the far-infrared (far-IR) emission from the galaxy – the high angular resolution of PACS allows us to isolate the ring\u27s contribution and we find it is responsible for 75, 60 and 55% of the total flux of NGC 1097 at 70, 100 and 160 μm, respectively. We compare the far-IR structure of the ring to what is seen at other wavelengths and identify a sequence of far-IR bright knots that correspond to those seen in radio and mid-IR images. The mid- and far-IR band ratios in the ring vary by less than ±20% azimuthally, indicating modest variation in the radiation field heating the dust on ~600 pc scales. We explore various explanations for the azimuthal uniformity in the far-IR colors of the ring including a lack of well-defined age gradients in the young stellar cluster population, a dominant contribution to the far-IR emission from dust heated by older (\u3e10 Myr) stars and/or a quick smoothing of local enhancements in dust temperature due to the short orbital period of the ring. Finally, we improve previous limits on the far-IR flux from the inner ~600 pc of NGC 1097 by an order of magnitude, providing a better estimate of the total bolometric emission arising from the active galactic nucleus and its associated central starburst
Unfolding-Based Process Discovery
This paper presents a novel technique for process discovery. In contrast to
the current trend, which only considers an event log for discovering a process
model, we assume two additional inputs: an independence relation on the set of
logged activities, and a collection of negative traces. After deriving an
intermediate net unfolding from them, we perform a controlled folding giving
rise to a Petri net which contains both the input log and all
independence-equivalent traces arising from it. Remarkably, the derived Petri
net cannot execute any trace from the negative collection. The entire chain of
transformations is fully automated. A tool has been developed and experimental
results are provided that witness the significance of the contribution of this
paper.Comment: This is the unabridged version of a paper with the same title
appearead at the proceedings of ATVA 201
Monte-Carlo simulations of the recombination dynamics in porous silicon
A simple lattice model describing the recombination dynamics in visible light
emitting porous Silicon is presented. In the model, each occupied lattice site
represents a Si crystal of nanometer size. The disordered structure of porous
Silicon is modeled by modified random percolation networks in two and three
dimensions. Both correlated (excitons) and uncorrelated electron-hole pairs
have been studied. Radiative and non-radiative processes as well as hopping
between nearest neighbor occupied sites are taken into account. By means of
extensive Monte-Carlo simulations, we show that the recombination dynamics in
porous Silicon is due to a dispersive diffusion of excitons in a disordered
arrangement of interconnected Si quantum dots. The simulated luminescence decay
for the excitons shows a stretched exponential lineshape while for uncorrelated
electron-hole pairs a power law decay is suggested. Our results successfully
account for the recombination dynamics recently observed in the experiments.
The present model is a prototype for a larger class of models describing
diffusion of particles in a complex disordered system.Comment: 33 pages, RevTeX, 19 figures available on request to
[email protected]
- …