
Unfolding-Based Process Discovery

Hernán Ponce-de-León1, César Rodŕıguez2, Josep Carmona3, Keijo Heljanko1,
and Stefan Haar4

1 Helsinki Institute for Information Technology HIIT and Department of Computer
Science and Engineering, School of Science, Aalto University, Finland

2 Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS, France
3 Universitat Politècnica de Catalunya, Barcelona, Spain

4 INRIA and LSV, École Normale Supérieure de Cachan and CNRS, France

Abstract. This paper presents a novel technique for process discovery.
In contrast to the current trend, which only considers an event log for
discovering a process model, we assume two additional inputs: an in-
dependence relation on the set of logged activities, and a collection of
negative traces. After deriving an intermediate net unfolding from them,
we perform a controlled folding giving rise to a Petri net which contains
both the input log and all independence-equivalent traces arising from it.
Remarkably, the derived Petri net cannot execute any trace from the neg-
ative collection. The entire chain of transformations is fully automated.
A tool has been developed and experimental results are provided that
witness the significance of the contribution of this paper.

1 Introduction

The derivation of process models from partial observations has received signif-
icant attention in the last years, as it enables eliciting evidence-based formal
representations of the real processes running in a system [1]. This discipline,
known as process discovery, has similar premises as in regression analysis, i.e.,
only when moderate assumptions are made on the input data one can derive
faithful models that represent the underlying system.

Formally, a technique for process discovery receives as input an event log,
containing the footprints of a process’ executions, and produces a model (e.g., a
Petri net) describing the real process. Many process discovery algorithms in the
literature make strong implicit assumptions. A widely used one is log complete-
ness, requiring every possible trace of the underlying system to be contained in
the event log. This is hard to satisfy by systems with cyclic or infinite behav-
ior, but also for systems that evolve continuously over time. Another implicit
assumption is the lack of noise in the log, i.e., traces denoting exceptional be-
havior that should not be contained in the derived process model. Finally, every
discovery technique has a representational bias. For instance, the α-algorithm [2]
can only discover Petri nets of a specific class (structured workflow nets).

Few attempts have been made to remove the aforementioned assumptions.
One promising direction is to relieve the discovery problem by assuming that
more knowledge about the underlying system is available as input. On this line,
the works in [3,4,5] are among the few that use domain knowledge in terms of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41827202?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Labeled

Partial

Orders
Structure

Event Occurrence

Net

Petri

 Net

Independence Negative Traces

Merge Fold
Event

 Log

Fig. 1. Unfolding-based process discovery.

negative information, expressed by traces which do not represent process behav-
ior. In this paper we follow this direction, but additionally incorporate a crucial
information to be used for the task of process discovery: when a pair of activities
are independent of each other. One example could be the different tests that
a patient should undergo in order to have a diagnosis: blood test, allergy test,
and radiology test, which are independent each other. We believe that obtaining
this coarse-grain independence information from a domain expert is an easy and
natural step; however, if they are not available, one can estimate them from
analysing the log with some of the techniques in the literature, e.g., the relations
computed by the α-algorithm [1].

The approach of this paper is summarized in Fig. 1. Starting from an event
log and an independence relation on its set of activities, we conceptually con-
struct a collection of labeled partial orders whose linearizations include both the
sequences in the log as well those in the same Mazurkiewicz trace [6], i.e., those
obtained via successive permutations of independent activities. We then merge
(the common prefixes of) this collection into an event structure which we next
transform into an occurrence net representing the same behavior. Finally, we
perform a controlled generalization by selectively folding the occurrence net into
a Petri net. This step yields a net that (a) can execute all traces contained in
the event log, and (b) generalizes the behavior of the log in a controlled manner,
introducing no execution given in the collection of negative traces. The folding
process is driven by a folding equivalence relation, which we synthesize using
SMT. Different folding equivalences guarantee different properties about the fi-
nal net. The paper proposes three different classes of equivalences and studies
their properties. In particular we define a class of independence-preserving fold-
ing equivalences, guaranteeing that the natural independence relation in the final
net will equal the one given by the expert.

In summary, the main contributions of the paper are:

– A general and efficient translation from prime event structures to occurrence
nets (Section 3).

– Three classes of folding equivalences of interest not only in process discovery
but also in formal verification of concurrent systems (Section 4).

– A method to synthesize folding equivalences using SMT (Section 5).
– An implementation of our approach and experimental results witnessing its

capacity to even rediscover the original model (Section 6).

Remarkably, the discovery technique of this paper solves for the first time
one of the foreseen operations in [7], which advocates for the unified use of event
structures to support process mining operations.

Proofs for all formal results stated in the paper can be found in [8].

2 Preliminaries

Events: given an alphabet of actions A, several occurrences of a given action can
happen on a run or execution. In this paper we consider a set E of events rep-
resenting the occurrence of actions in executions. Each event e ∈ E has the form
e ∶= ⟨a,H⟩, where a ∈ A and H ⊆ E is a subset of events causing e (its history).
The label of an event is given by a function λ∶E → A defined as λ(⟨a,H⟩) ∶= a.

Labeled partial orders (lpos): we represent a labelled partial order by a pair
(E,≤), where ≤ ⊆ E ×E is a reflexive, antisymmetric and transitive relation on
the set E of events. Two distinct events e, e′ ∈ E can be either ordered (e ≤ e′
or e′ ≤ e) or concurrent (e /≤ e′ and e′ /≤ e). Observe that all events are implicitly
labelled by λ.

Petri nets: a net consists of two disjoint sets P and T representing respectively
places and transitions together with a set F of flow arcs. The notion of state of
the system in a net is captured by its markings. A marking is a multiset M of
places, i.e., a map M ∶P → N. We focus on the so-called safe nets, where markings
are sets, i.e., M(p) ∈ {0,1} for all p ∈ P . A Petri net (PN) is a net together
with an initial marking and a total function that labels its transitions over an
alphabet A of observable actions. Formally a PN is a tuple N ∶= (P,T,F, λ,M0)
where (i) P /= ∅ is a set of places; (ii) T /= ∅ is a set of transitions such that
P ∩ T = ∅; (iii) F ⊆ (P × T) ∪ (T × P) is a set of flow arcs; (iv) λ∶T → A is a
labeling mapping; and (v) M0 ⊆ P is an initial marking. Elements of P ∪ T are
called the nodes of N . For a transition t ∈ T , we call ●t ∶= {p ∣ (p, t) ∈ F} the
preset of t, and t● ∶= {p ∣ (t, p) ∈ F} the postset of t. In figures, we represent
as usual places by empty circles, transitions by squares, F by arrows, and the
marking of a place p by black tokens in p. A transition t is enabled in marking

M , written M
tÐ→, iff ●t ⊆ M . This enabled transition can fire, resulting in a

new marking M ′ ∶= (M/●t) ∪ t●. This firing relation is denoted by M
tÐ→ M ′. A

marking M is reachable from M0 if there exists a firing sequence, i.e. transitions,

t1, . . . , tn such that M0
t1Ð→ . . .

tnÐ→ M . The set of reachable markings from M0

is denoted by reach(N). The set of co-enabled transitions is coe(N) ∶= {(t, t′) ∣
∃M ∈ reach(N)∶ ●t ⊆ M ∧ ●t′ ⊆ M}. The set of observations of a net is the

image over λ of its fireable sequences, i.e., σ ∈ obs(N) iff M0
t1Ð→ . . .

tnÐ→M and
λ(t1) . . . λ(tn) = σ.

Occurrence nets: occurrence nets can be seen as infinite Petri nets with a spe-
cial acyclic structure that highlights conflict between transitions that compete
for resources. Places and transitions of an occurrence net are usually called
conditions and events. Formally, let N ∶= (P,T,F) be a net, < the transi-
tive closure of F , and ≤ the reflexive closure of <. We say that transitions t1
and t2 are in structural conflict, written t1 #s t2, if and only if t1 /= t2 and
●t1∩ ●t2 /= ∅. Conflict is inherited along <, that is, the conflict relation # is given
by a # b⇔ ∃ta, tb ∈ T ∶ ta #s tb ∧ ta ≤ a ∧ tb ≤ b. Finally, the concurrency relation
co holds between nodes a, b ∈ P ∪ T that are neither ordered nor in conflict, i.e.
a co b⇔ ¬(a ≤ b) ∧ ¬(a # b) ∧ ¬(b ≤ a).

A net β ∶= (B,E,F) is an occurrence net iff (i) ≤ is a partial order; (ii) for
all b ∈ B, ∣●b∣ ∈ {0,1}; (iii) for all x ∈ B ∪ E, the set [x] ∶= {y ∈ E ∣ y ≤ x} is
finite; (iv) there is no self-conflict, i.e. there is no x ∈ B ∪ E such that x # x.
The initial marking M0 of an occurrence net is the set of conditions with an
empty preset, i.e. ∀b ∈ B∶ b ∈ M0 ⇔ ●b = ∅. Every ≤-closed and conflict-free set
of events C is called a configuration and generates a reachable marking defined
as Mark(C) ∶= (M0 ∪ C●) ∖ ●C. We also assume a labeling function λ∶E → A
from events in β to alphabet A. Conditions are of the form ⟨e,X⟩ where e ∈ E
is the event generating the condition and X ⊆ E are the events consuming
it. Occurrence nets are the mathematical form of the partial order unfolding
semantics of a Petri net [9]; we use indifferently the terms occurrence net and
unfolding.

Conditions in an occurrence net can be removed by keeping the causal de-
pendencies and introducing a conflict relation; the obtained object is an event
structure [10].

Event structures: an event structure is a tuple E ∶= (E,≤,#) where E is a set
of events; ≤ ⊆ E ×E is a partial order (called causality) satisfying the property
of finite causes, i.e. ∀e ∈ E ∶ ∣[e]∣ < ∞ where [e] ∶= {e′ ∈ E ∣ e′ ≤ e}; # ⊆ E × E
is an irreflexive symmetric relation (called conflict) satisfying the property of
conflict heredity, i.e. ∀e, e′, e′′ ∈ E ∶ e # e′ ∧ e′ ≤ e′′ ⇒ e # e′′. Note that in
most cases one only needs to consider reduced versions of relations ≤ and #,
which we will denote ⋖ and #d, respectively. Formally, ⋖ (which we call direct
causality) is the transitive reduction of ≤, and #d (direct conflict) is the smallest
relation inducing # through the property of conflict heredity. A configuration is
a computation state represented by a set of events that have occurred; if an event
is present in a configuration, then so must all the events on which it causally
depends. Moreover, a configuration does not contain conflicting events. Formally,
a configuration of (E,≤,#) is a set C ⊆ E such that e ∈ C ⇒ (∀e′ ≤ e ∶ e′ ∈ C),
and (e ∈ C ∧e # e′)⇒ e′ /∈ C. The set of configurations of E is denoted by Ω(E).

Mazurkiewicz traces: let A be a finite alphabet of letters and ◇ ⊆ A × A a
symmetric and irreflexive relation called independence. The relation ◇ induces
an equivalence relation ≡◇ over A∗. Two words σ and σ′ are equivalent (σ ≡◇ σ′)
if there exists a sequence σ1 . . . σk of words such that σ = σ1, σ′ = σk and for all
1 ≤ i ≤ k there exists words σ′i, σ

′′
i and letters ai, bi satisfying

σi = σ′iaibiσ′′i , σi+1 = σ′ibiaiσ′′i , and (ai, bi) ∈◇
Thus, two words are equivalent by ≡◇ if one can be obtained from the other by
successive commutation of neighboring independent letters. For a word σ ∈ A∗
the equivalence class of σ under ≡◇ is called a Mazurkiewicz trace [6].

We now describe the problem tackled in this paper, one of the main challenges
in the process mining field [1].

Process Discovery: a log L is a finite set of traces over an alphabet A representing
the footprints of the real process executions of a system S that is only (partially)
visible through these runs. Process discovery techniques aim at extracting from

a log L a process model M (e.g., a Petri net) with the goal to elicit the process
underlying in S. By relating the behaviors of L, obs(M) and S, particular
concepts can be defined [11]. A log is incomplete if S/L ≠ ∅. A modelM fits log
L if L ⊆ obs(M). A model is precise in describing a log L if obs(M)/L is small.
A modelM represents a generalization of log L with respect to system S if some
behavior in S/L exists in obs(M). Finally, a model M is simple when it has
the minimal complexity in representing obs(M), i.e., the well-known Occam’s
razor principle. It is widely acknowledged that the size of a process model is the
most important simplicity indicator. Let UN be the universe of nets, we define a
function ĉ ∶ UN → N to measure the simplicity of a net by counting the number
of some of its elements, e.g., its transitions and/or places.

3 Independence-Preserving Discovery

Let S be a system whose set of actions is A. Given two actions a, b ∈ A and one
state s of S, we say that a and b commute at s when

– if a can fire at s and its execution reaches state s′, then b is possible at s iff
it is possible at s′; and

– if both a and b can fire at s, then firing ab and ba reaches the same state.

Commutativity of actions at states identifies an equivalence relation in the set
of executions of the system S; it is a ternary relation, relating two transitions
with one state.

Since asking the expert to provide the commutativity relation of S would
be difficult, we restrict ourselves to unconditional independence, i.e., a conser-
vative overapproximation of the commutativity relation that is a sole property
of transitions, as opposed to transitions and states. An unconditional indepen-
dence relation of S is any binary, symmetric, and irreflexive relation ◇ ⊆ A ×A
satisfying that if a◇ b then a and b commute at every reachable state of S. If
a, b are not independent according to ◇, then they are dependent, denoted by
a} b.

In this section, given a log L ⊆ A∗, representing some behaviors of S, and an
arbitrary unconditional independence ◇ of S, provided by the expert, we con-
struct an occurrence net whose executions contain L together with all sequences
in A∗ which are ≡◇-equivalent to some sequence in L.

If commuting actions are not declared independent by the expert (i.e., ◇ is
smaller than it could be), then M will be more sequential than S; if some
actions that did not commute are marked as independent, then M will not
be a truthful representation of S. The use of expert knowledge in terms of an
independence relation is a novel feature not considered before in the context of
process discovery. We believe this is a powerful way to fight with the problem
of log incompleteness in a practical way since it is only needed to observe in the
log one trace representative of a class in ≡◇ to include the whole set of traces of
the class in the process model’s executions.

Our final goal is to generate a Petri net that represents the behavior of the
underlying system. We start by translating L into a collection of partial orders
whose shape depends on the specific definition of ◇.

Definition 1. Given a sequence σ ∈ A∗ and an independence relation ◇ ⊆ A×A,
we associate to σ a labeled partial order lpo◇(σ) inductively defined by:

1. If σ = ε, then let � ∶= ⟨τ,∅⟩ and set lpo◇(σ) ∶= ({�},∅).
2. If σ = σ′a, then let lpo◇(σ′) ∶= (E′,≤′) and let e ∶= ⟨a,H⟩ be the single event

such that H is the unique ⊆-minimal, causally-closed set of events in E′
satisfying that for any event e′ ∈ E′, if λ(e′) } a, then e′ ∈ H. Then set
lpo◇(σ) ∶= (E,≤) with E ∶= E′ ∪ {e} and ≤ ∶= ≤′ ∪ (H × {e}).

Since a system rarely generates a single observation, we need a compact
way to model all the possible observations of the system. We represent all the
partially ordered executions of a system with an event structure.

Definition 2. Given a set of partial orders S ∶= {(Ei,≤i) ∣ 1 ≤ i ≤ n}, we define
ES(S) ∶= (E,≤,#) where:

1. E ∶= ⋃
1≤i≤n

Ei,

2. ≤ ∶= (⋃
1≤i≤n

≤i)∗, and

3. for e ∶= ⟨a,H⟩ and e′ ∶= ⟨b,H ′⟩, we have that e #d e
′ (read: e and e′ are in

direct conflict) iff e′ /∈ H,e /∈ H ′ and a} b. The conflict relation # is the
smallest relation that includes #d and is inherited w.r.t. ≤, i.e., for e # e′
and e ≤ f , e′ ≤ f ′, one has f # f ′.

Given a set of finite partial orders S, we now show that S is included in the
configurations of the event structure obtained by Definition 2. This means that
our event structure is a fitting representation of L.

Proposition 1. If S is finite, then S ⊆ Ω(ES(S)).

Since we want to produce a Petri net, we now need to “attach conditions” to
the result of Definition 2. Event structures and occurrence nets are conceptually
very similar objects so this might seem very easy for the acquainted reader.
However, this definition is crucial for the success of the subsequent folding step
(Section 4), as we will be constrained to merge conditions in the preset and
postset of an event when we merge the event. As a result, the conditions that
we produce now should constraint as little as possible the future folding step.

Definition 3. Given an event structure E ∶= (E,≤,#) we construct the occur-
rence net β ∶= (B,E/{�}, F) in two steps

1. Let G ∶= (V,A) be a graph where V ∶= E and (e1, e2) ∈ A iff e1 #d e2.
For each clique (maximal complete subgraph) K ∶= {e1, . . . , en} of G, let
CK ∶= [e1] ∩ ⋅ ⋅ ⋅ ∩ [en] and eK ∈ max(CK). We add a condition b to B and
set b ∈ eK● and b ∈ ●ei for i = 1 . . . n.

2. For each e ∈ E, let Ge ∶= (Ve,Ae) be a graph where Ve ∶= {e′ ∈ E ∣ e ⋖ e′} and
(e1, e2) ∈ Ae iff λ(e1)} λ(e2). For each clique Ke ∶= {e1, . . . , en} of Ge, we
add a condition b to B and set b ∈ e● and b ∈ ●ei for i = 1 . . . n.

Definition 3.1. adds a condition for every set of pairwise direct conflicting
events; the condition is generated by some event eK which is in the past of
every conflicting event and consumed by all of them; by the latter the conflict
of the event structure is preserved in the occurrence net. For each event and its
immediate successors, Definition 3.2. adds conditions between them to preserve
causality. To minimize the number of conditions, for the successor events having
dependent labels only one condition is generated. This step does not introduce
new conflicts in the occurrence net since the events have dependent labels and
none is in the past of the other, then by Definition 2 they are also in conflict in
the event structure.

We note that Winskel already explained, in categorical terms, how to re-
late an event structure with an occurrence net [12]. However, his definition is
of interest only in that context, while ours focus on a practical and efficient
translation.

Given a log L and an independence relation ◇, the net obtained applying
Definitions 1, 2 and 3, in this order, is denoted by βL,◇. Since every trace in L is
a linearization of some of the partial orders in the set S obtained by Definition 1
and these partial orders are included by Proposition 1 in the configurations of
ES(S) (which are the same as the configurations in βL,◇), the obtained net is
fitting.

Proposition 2. Let L be a log and ◇ an independence relation, for every σ ∈ L
we have σ ∈ obs(βL,◇).

It is worth noticing that the obtained net generalizes the behavior of the
model, but in a controlled manner imposed by the independence relation. For
instance, if L ∶= {ab} and a◇ b, then ba ∈ obs(βL,◇), even if this behavior was
not present in the log. If the expert rightly declared a and b independent (i.e.,
if they commute at all states of S), then necessarily ba is a possible observation
of S, even if it is not in L. The extra information provided by the expert allows
us to generalize the discovered model in a provably sound manner, thus coping
with the log incompleteness problem.

The independence relation between labels gives rise to an arbitrary relation
between transitions of a net (not necessarily an independence relation):

Definition 4. Let ◇ ⊆ A ×A be an independence relation, N ∶= (P,T,F, λ,M0)
a net, and λ∶T → A. We define relation ◇N ⊆ T ×T between transitions of N as

t◇N t′⇔ λ(t)◇ λ(t′).

In the next section we will define an approach to fold βL,◇ into a Petri net
whose natural independence relation equals ◇. To formalize our approach we
first need to define such natural independence.

Definition 5. Let N ∶= (P,T,F) be a net. We define the natural independence
relation ◊N ⊆ T × T on N as

t ◊N t′⇔ ●t ∩ ●t′ = ∅ ∧ t● ∩ ●t′ = ∅ ∧ ●t ∩ t′● = ∅.

In fact, one can prove that when N is safe, then ◊N is the notion of indepen-
dence underlying the unfolding semantics of N . In other words, the equivalence

classes of ≡◊N
are in bijective correspondence with the configurations in the

unfolding of N . The following result shows that the natural independence on the
discovered occurrence net corresponds to the relation provided by the expert,
when both we restrict to the set of co-enabled transitions.

Theorem 1. Let βL,◇ be the occurrence net from the log L with ◇ as the inde-
pendence relation, then

◇βL,◇ ∩ coe(βL,◇) = ◊βL,◇ ∩ coe(βL,◇)

4 Introducing Generalization

The construction described in the previous section guarantees that the unfolding
obtained is fitting (see Proposition 1). However, the difference between S and L
may be significant (e.g., S can contain cyclic behavior that can be instantiated
an arbitrary number of times whereas only finite traces exist in L) and the
unfolding may be poor in generalization. The goal of this section is to generalize
βL,◇ in a way that the right patterns from S, partially observed in L (e.g., loops),
are incorporated in the generalized model. To generalize, we fold the discovered
occurrence net. This folding is driven by an equivalence relation ∼ on E ∪ B
that dictates which events merge into the same transition, and analogously for
conditions; events cannot be merged with conditions. We write [x]∼ ∶= {x′ ∣ x ∼
x′} for the equivalence class of node x. For a set X, [X]∼ ∶= {[x]∼ ∣ x ∈ X} is a
set of equivalence classes.

Definition 6 (Folded net [13]). Let β ∶= (B,E,F) be an occurrence net and
∼ a equivalence relation on the nodes of β. The folded Petri net (w.r.t. ∼) is
defined as β∼ ∶= (P∼, T∼, F∼,M0∼) where

P∼ ∶= {[b]∼ ∣ b ∈ B}, F∼ ∶= {([x]∼, [y]∼) ∣ (x, y) ∈ F},
T∼ ∶= {[e]∼ ∣ e ∈ E}, M0∼([b]∼) ∶= ∣{b′ ∈ [b]∼ ∣ ●b′ = ∅}∣.

Notice that the initial marking of the folded net is not necessarily safe. Safe-
ness of the net depends on the chosen equivalence relation (see Proposition 3).

4.1 Language-Preserving Generalization

Different folding equivalences guarantee different properties on the folded net.
From now on we focus our attention on three interesting classes of folding equiv-
alences. The first preserves sequential executions of βL,◇.

Definition 7 (Sequence-preserving folding equivalence). Let β be an oc-
currence net; an equivalence relation ∼ is called a sequence preserving (SP) fold-
ing equivalence iff e1 ∼ e2 implies λ(e1) = λ(e2) and [●e1]∼ = [●e2]∼ for all events
e1, e2 ∈ E.

From the definition above it follows that e1 ∼ e2 implies ∀b ∈ ●e1 ∶ ∃b′ ∈ ●e2
with b ∼ b′. Since for every folded net obtained from a SP folding equivalence
only equally labeled events are merged; we define then λ([e]∼) ∶= λ(e).

p1

a b

p2 p3

b d

p4 p5

c

p6

βL,◇

[p1]∼1

a b

[p2]∼1 [p3]∼1

d[p4]∼1

[p5]∼1c

[p6]∼1

β∼1
L,◇

p2 ∈ [p1]∼2

a b

[p3]∼2

d

[p4]∼2

[p5]∼2

c

[p6]∼2

β∼2
L,◇

p2 ∈ [p1]∼3

a b

p4 ∈ [p3]∼3

d

[p5]∼3

c

[p6]∼3

β∼3
L,◇

Fig. 2. Folding equivalences and folded nets.

Example 1. Consider the log L = {abc, bd} and the independence relation ◇ = ∅.
Fig. 2 shows the obtained unfolding βL,◇ (left) and three of its folded nets. The
equivalence relation ∼1 merges events labeled by b, but it does not merge their
presets, i.e. is not a SP folding equivalence. It can be observed that bd is not
fireable in β∼1

L,◇. Whenever two events are merged, their preconditions need to
be merged to preserved sequential executions. The equivalence relation ∼2 does
not only merge events labeled by b, but it also sets p1 ∼2 p2 and is a SP folding
equivalence. The folded net β∼2

L,◇ can replay every trace in the log L, but it also

adds new traces of the form a∗, a∗b, a∗bc, a∗bd, a∗bcd and a∗bdc.

Given an unfolding, every SP folding equivalence generates a net that pre-
serves its sequential executions.

Theorem 2. Let β be an occurrence net and ∼ a SP folding equivalence, then
every fireable sequence M0

e1Ð→ . . .
enÐ→ Mn from β generates a fireable sequence

[M0]∼
[e1]∼ÐÐÐ→ . . .

[en]∼ÐÐÐ→ [Mn]∼ from β∼.

As a corollary of the result above and Proposition 2, the folded net obtained
from βL,◇ with a SP folding equivalence is fitting.

Corollary 1. Let L be a log, ◇ an independence relation and ∼ a SP folding
equivalence, then for every σ ∈ L we have σ ∈ obs(β∼L,◇).

Example 2. We saw in Example 1 that every trace from L can be replayed in
β∼2

L,◇, but (as expected) the net accepts more traces. However this net also adds
some independence between actions of the system: after firing b the net puts
tokens at [p3]∼2 and [p4]∼2 and the reached marking enables concurrently actions
c and d which contradicts c}d (the independence relation ◇ = ∅ implies c}d).
In order to avoid this extra independence, we now consider the following class
of equivalences.

Definition 8 (Independence-preserving folding equivalence). Let β be
an occurrence net and ◇ an independence relation; an equivalence relation ∼ is
called an independence preserving (IP) folding equivalence iff

1. ∼ is a SP folding equivalence,

2. λ(e1)◇ λ(e2)⇔ [●e1]∼ ∩ [●e2]∼ = ∅ ∧ [●e1]∼ ∩ [e2●]∼ = ∅ ∧ [e●1]∼ ∩ [●e2]∼ = ∅
for all events e1, e2 ∈ E.

3. b1 co b2 implies b1 /∼ b2 for all conditions b1, b2 ∈ B.

IP folding equivalences not only preserve the sequential behavior of β, but
also ensure that β∼ and β exhibit the same natural independence relation.

The definition above differs from the folding equivalence definition given in
[13]; they consider occurrence nets coming from an unfolding procedure which
takes as an input a net. This procedure generates a mapping between conditions
and events of the generated occurrence net and places and transitions in the
original net. Such mapping is necessary to define their folding equivalence. In
our setting, the occurrence net does not come from a given net and therefore the
mapping is not available.

Example 3. The equivalence ∼2 from Fig. 2 is not an IP folding equivalence
since the intersection of the equivalent classes of the preset of c and d is empty
([●c]∼2 = {[p4]∼2}, [●d]∼2 = {[p3]∼2} and {[p4]∼2} ∩ {[p3]∼2} = ∅), but c and d
are not independent. Consider the equivalence relation ∼3 which merges events
labeled by b and it sets p1 ∼3 p2 and p3 ∼3 p4; this relation is an IP folding
equivalence. It can be observed in the net β∼3

L,◇ of Fig. 2 that all the traces from
the log can be replayed, but new independence relations are not introduced.

The occurrence net βL,◇ is clearly safe. We show that β∼L,◇ is also safe when ∼
is an IP folding equivalence. In this work, we constraint IP equivalences to gen-
erate safe nets because their natural independence relation is well understood
(Definition 5), thus allowing us to assign a solid meaning to the class IP. It is
unclear what is the natural unconditional independence of an unsafe net, and
extending our definitions to such nets is subject of future work.

Proposition 3. Let βL,◇ be the unfolding obtained from the log L with ◇ as
the independence relation and ∼ an IP folding equivalence. Then β∼L,◇ is safe.

Theorem 1 shows that the structural relation between events of the unfolding
and the relation generated by the independence given by the expert coincide
(when we restrict to co-enabled events); the result also holds for the folded net
when an IP folding equivalence is used.

Theorem 3. Let βL,◇ be the unfolding obtained from the log L with ◇ as the
independence relation and ∼ an IP folding equivalence, then ◇β∼

L,◇
= ◊β∼

L,◇
.

4.2 Controlling Generalization via Negative Information

We have shown that IP folding equivalences preserve independence. However,
they could still introduce new unintended behaviour not present in S. In this
section we limit this phenomena by considering negative information, denoted by
traces that should not be allowed by the model. Concretely, we consider negative
information which is also given in the form of sequences σ ∈ L− ⊆ A∗. Negative
information is often provided by an expert, but it can also be obtained automat-
ically by recent methods [14]. Very few techniques in the literature use negative
information in process discovery [5]. In this work, we assume a minimality cri-
terion on the negative traces used:

Assumption 1 Let L ∶= L+⊎L− be a pair of positive and negative logs and ◇ the
independence relation given by the expert. Any negative trace σ ∈ L− corresponds
to the local configuration of some event eσ in βL,◇.

This assumption implies that each negative trace is of the form σ′a where σ′
only contains the actions that are necessarily to fire a. If a can happen without
them, they should not be consider part of σ. By removing all events eσ from
βL,◇ (one for each negative trace σ ∈ L−), we obtain a new occurrence net
denoted by βL,◇,∗. The goal of this section is to fold this occurrence net without
re-introducing the negative traces in the generalization step. If the expert is
unable to provide negative traces satisfying this assumption, the discovery tool
can always let him/her choose eσ from a visual representation of the unfolding.

Definition 9 (Removal-aware folding equivalence). Let β ∶= (B,E,F) be
an occurrence net and L− a negative log; an equivalence relation ∼ is called
removal aware (RA) folding equivalence iff

1. ∼ is a SP folding equivalence, and
2. for every σ ∈ L− and e′ ∈ E we have λ(e′) = λ(eσ) implies [●e′]∼ /⊆ [●eσ].

The folded net obtained from βL,◇,∗ with a RA folding equivalence does not
contain any of the negative traces.

Theorem 4. Let βL,◇,∗ be the unfolding obtained from the log L ∶= L+⊎L− with
◇ as the independence relation after removing the corresponding event of each
negative trace and ∼ a RA folding equivalence,5 then

obs(β∼L,◇,∗) ∩L− = ∅

5 Computing Folding Equivalences

Section 3 presents a discovery algorithm that generates fitting occurrence nets
and Section 4 defines three classes of folding criteria, SP, IP, and RA, that
ensure various properties. This section proposes an approach to synthesize SP, IP
and RA folding equivalences using SMT.

5.1 SMT Encoding

We use an SMT encoding to find folding equivalences generating a net β∼ satis-
fying specific metric properties. Specifically, given a measure ĉ (cf., Section 2),
decidable in polynomial time, and a number k ∈ N, we generate an SMT formula
which is satisfiable iff there exists a folding equivalence ∼ such that ĉ(β∼) = k. We
consider the number of transitions in the folded net as the measure ĉ, however,
theoretically, any other measure that can be computed in polynomial time could
be used. As explained in Section 2 simple functions like counting the number of
nodes/arcs provide in practice reasonable results.

5 Since Definition 9 refers to the events that generates the local configurations of the
negative traces, the folding equivalence must be defined over the nodes of βL,◇ and
not those of βL,◇,∗.

Given an occurrence net β ∶= (B,E,F), for every event e ∈ E and condi-
tion b ∈ B we have integer variables ve and vb. The key intuition is that two
events (conditions) whose variables have equal number are equivalent and will
be merged into the same transition (place). The following formulas state, respec-
tively, that every element of a set X is related with at least one element of a set
Y , and that every element of X is not related with any element of Y :

φsubX,Y ∶= ⋀
x∈X
⋁
y∈Y

(vx = vy) φdisjX,Y ∶= ⋀
x∈X,y∈Y

(vx /= vy)

We force any satisfying assignment to represent an SP folding equivalence
(Definition 7) with the following two constraints:

φSPβ ∶= φlabβ ∧ φpreβ .

Formulas φlabβ and φpreβ impose that only equally labeled events should be equiv-

alent and that if two events are equivalent, then their presets should generate
the same equivalence class:

φlabβ ∶= ⋀
e,e′∈E

λ(e)/=λ(e′)

(ve /= ve′) φpreβ ∶= ⋀
e,e′∈E

(ve = ve′ ⇒ (φsub●e,●e′ ∧ φsub●e′,●e))

In addition to the properties encoded above, an IP folding equivalence (Def-
inition 8) should satisfy some other restrictions:

φIPβ ∶= φSPβ ∧ φindβ ∧ φcoβ
where φindβ imposes that the presets and postsets of events with independent
labels should generate equivalence classes that do not intersect and φcoβ forbids
concurrent conditions to be merged:

φindβ ∶= ⋀
e,e′∈E

(λ(e)◇ λ(e′)⇔ (φdisj●e,●e′ ∧ φ
disj
●e,e′● ∧ φ

disj
●e,e′●)) φcoβ ∶= ⋀

b,b′∈B
b co b′

(vb /= vb′)

Given a negative log L−, to encode a RA folding equivalence (Definition 9)
we define:

φRAβ,L− ∶= φSPβ ∧ (⋀
σ∈L−,e′∈E
λ(e′)=λ(eσ)

¬φsub●e′,●eσ)

where the right part of the conjunction imposes that for every eσ generated by
a negative trace and any other event with the same label, their presets cannot
generate the same equivalence class.

We now encode the optimality (w.r.t. the number of transitions) of the mined
net. Given an occurrence net β ∶= (B,E,F), each event e ∈ E generates a tran-
sition ve in the folded net β∼. To impose that the number of transitions in β∼
should be at most k ∈ N, we define:

φMET
β,k ∶= ⋀

e∈E
(1 ≤ ve ≤ k)

To find an IP and RA folding equivalence that generates a net with at most
k transitions we propose the following encoding:

φOPTβ,L−,k ∶= φIPβ ∧ φRAβ,L− ∧ φMET
β,k

Theorem 5. Let L ∶= L+ ⊎L− be a set of positive and negative logs, ◇ ⊆ A ×A
and independence relation and k ∈ N. The formula φOPTβ,L−,k is satisfiable iff there
exists an IP and RA folding equivalence ∼ such that β∼L,◇,∗ contains at most k
transitions.

5.2 Finding an Optimal Folding Equivalence

Section 5.1 explains how to compute a folding equivalence that generates a folded
net with a bounded number of transitions; this section explain how to obtain
the optimal folded net, i.e the one with minimal number of transitions satisfying
the properties of Theorem 3 and Theorem 4.

Iterative calls to the SMT solver can be done for a binary search with k
between mink and maxk; since only equally labeled events can be merged by
the folding equivalence, the minimal number of transitions in the folded net is
mink ∶= ∣A∣; in the worst case, when events cannot be merged, maxk ∶= ∣E∣.

As a side remark, we have noted that the optimal folding equivalence can be
encoded as a MaxSMT problem [15] where some clauses which are called hard
must be true in a solution (in our case φIPβ and φRAβ,L−) and some soft clauses may

not (φMET
β,k for ∣A∣ ≤ k ≤ ∣E∣); a MaxSMT solver maximizes the number of soft

clauses that are satisfiable and thus it obtains the minimal k generating thus the
optimal folded net.

6 Experiments

As a proof of concept, we implemented our approach into a new tool called
Pod (Partial Order Discovery).6 It supports synthesis of SP and IP folding
equivalences using a restricted form of our SMT encoding. In particular Pod
merges all events with equal label, in contrast to the encoding in Section 5
which may in general yield more than one transition per log action. While this
ensures a minimum (optimal as per Section 5.2) number of folded transitions,
the tool could sometimes not find a suitable equivalence (unsatisfiable SMT
encoding). Since the number of transitions in the folded net is fixed, it turns out
that the quality of the mined model increases as we increase the number of folded
places, as we show below. Using Pod we evaluate the ability of our approach to
rediscover the original process model, given its independence relation and a set
of logs. For this we have used standard benchmarks from the verification and
process mining literature [16,17].

In our experiments, Table 1, we consider a set of original processes faith-
fully modelled as safe Petri nets. For every model S we consider a log L, i.e.
a subset of its traces. We extract from S the (best) independence relation ◊S
that an expert could provide. We then provide L and ◊S to Pod and find an
SP folding equivalence with the largest number of places (cols. “max. places”)
and with 60% of the places of S (last group of cols.), giving rise to two different
mined models. All three models, original plus mined ones, have perfect fitness
but varying levels of precision, i.e. traces of the model not present in the log. For

6 Tool and benchmarks: http://lipn.univ-paris13.fr/~rodriguez/exp/atva15/.

http://lipn.univ-paris13.fr/~rodriguez/exp/atva15/

Original Pod (max. places) Pod (60% places)

Benchmark ∣T ∣ ∣P ∣ rS⊆M rM⊆S %Prec. ∣P ∣ rS⊆M rM⊆S %Prec. ∣P ∣

A(22) 22 20 0.99 1.00 0.77 19 0.57 1.00 0.22 11
A(32) 32 32 1.00 1.00 0.80 32 0.46 1.00 0.19 19
A(42) 42 47 0.98 1.00 0.54 40 0.79 1.00 0.21 28
T(32) 33 31 1.00 1.00 0.88 31 0.54 1.00 0.19 18
Angio(1) 64 39 0.39 0.94 0.18 21 0.10 0.92 0.06 13
Complex 19 13 0.98 1.00 0.62 12 0.62 1.00 0.39 7
ConfDimB 11 10 1.00 1.00 1.00 10 0.62 1.00 0.39 6
Cycles(5) 20 16 1.00 1.00 1.00 16 0.60 1.00 0.40 6
DbMut(2) 32 38 0.98 0.98 0.94 32 0.76 0.98 0.21 19
Dc 32 35 0.99 0.99 0.77 27 0.84 0.99 0.38 21
Peters(2) 126 102 0.45 1.00 0.07 51 0.30 1.00 0.05 30

Table 1. Experimental results.

the mined models, we report (cols. “%Prec.”) on the ratio between their pre-
cision and the precision of the original model S. All precisions were estimated
using the technique from [18]. All Pod running times were below 10s.

Additionally, we measure how much independence of the original model is
preserved in the mined ones. For that, we define the ratios rS⊆M ∶= ∣◊S∩◊M∣/∣◊S ∣
and rM⊆S ∶= ∣◊S∩◊M∣/∣◊M∣. The closer rS⊆M is to 1, the larger is the number of
pairs in ◊S also contained in ◊M (i.e., the more independence was preserved),
and conversely for rM⊆S (the less independence was “invented”). Remark that
◊S = ◊M iff rS⊆M = rM⊆S = 1.

In 7 out of the 11 benchmarks in Table 1 our proof-of-concept tool rediscovers
the original model or finds one with only minor differences. This is even more
encouraging when considering that we only asked Pod to find SP equivalences
which, unlike IP, do not guarantee preservation of independence. In 9 out of 11
cases both ratios rS⊆M and rM⊆S are above 98%, witnessing that independence is
almost entirely preserved. Concerning the precision, we observe that it is mostly
preserved for these 9 models. We observe a clear correlation between the number
of discovered places and the precision of the resulting model. The running times
of Pod on all benchmarks in Table 1 were under few seconds.

In Peters(2) and Angio(1) our tool could not increase the number of places
in the folded net, resulting in a significant loss of independence and precision. We
tracked the reason down to (a) the additional restrictions on the SMT encoding
imposed by our implementation and (b) the algorithm for transforming event
structures into unfoldings (i.e., introducing conditions). We plan to address this
in future work. This also prevented us from of employing IP equivalences instead
of SP for these experiments: Pod could find IP equivalences for only 5 out of 11
cases. Nonetheless, as we said before, in 9 out of 11 the found SP equivalences
preserved at least 98% of the independence.

Finally, we instructed Pod to synthesize SP equivalences folding into an
arbitrarily chosen low number of places (60% of the original). Here we observe
a large reduction of precision and significant loss of independence (surprisingly
only rS⊆M drops, but not rM⊆S). This witnesses a strong dependence between

the number of discovered places and the ability of our technique to preserve
independence.

7 Related Work

To the best of our knowledge, there is no technique in the literature that solves
the particular problem we are considering in this paper: given a set of positive and
negative traces and an independence relation on events, derive a Petri net that
both preserves the independence relation and satisfies the quality dimensions
enumerated in Section 2. However, there is related work that intersects partially
with the techniques of this paper. We now report on it.

Perhaps the closest work is [13], where the simplification of an initial process
model is done by first unfolding the model (to derive an overfitting model)
and then folding it back in a controlled manner, thus generalizing part of the
behavior. The approach can only be applied for fitting models, which hampers its
applicability unless alignment techniques [19] are used. The folding equivalences
presented in this paper do not consider a model and therefore are less restrictive
than the ones presented in [13].

Synthesis is a problem different from discovery: in synthesis, the underlying
system is given and therefore one can assume S = L. Considering a synthesis
scenario, Bergenthum et al. have investigated the synthesis of a p/t net from
partial orders [20]. The class of nets considered in this paper (safe Petri nets)
is less expressive than p/t nets, which in practice poses no problems in the
context of business processes. The algorithms in [20] are grounded in the theory
of regions and split the problem into two steps (i) the p/t net M is generated
which, by construction, satisfies L ⊆ obs(M), and (ii) it is checked whereas
L = obs(M). Actually, by avoiding (ii), a discovery scenario is obtained where
the generalization feature is not controlled, in contrast to the technique of this
paper. With the same goal but relying on ad-hoc operators tailored to compose
lpos (choice, sequentialization, parallel compositions and repetition), a discovery
technique is presented in [21]. Since the operators may in practice introduce
wrong generalizations, a domain expert is consulted for the legality of every
extra run.

8 Conclusions

A fresh look at process discovery is presented in this paper, which establishes the-
oretical basis for coping with some of the challenges in the field. By automating
the folding of the unfolding that covers traces in the log but also combinations
thereof derived from the input independence relation, problems like log incom-
pleteness and noise may be alleviated. The approach has been implemented and
the initial results show the potential of the technique in rediscovering a model,
even for the simplest of the folding equivalences described in this paper.

Next steps will focus on implementing the remaining folding equivalences,
and in general improving the SMT constraints for computing folding equiva-
lences. Also, incorporating the notion of trace frequency in the approach will be
considered, to guide the technique to focus on principal behavior. This will allow
to also test the tool in presence of incomplete or noisy logs.

References

1. van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhance-
ment of Business Processes. Springer (2011)

2. van der Aalst, W.M.P.: On the representational bias in process mining. In: 20th
IEEE International Workshops on Enabling Technologies: Infrastructures for Col-
laborative Enterprises, WETICE 2011, France, 2011. (2011) 2–7

3. Ferreira, H., Ferreira, D.: An integrated life cycle for workflow management based
on learning and planning. International Journal of Cooperative Information Sys-
tems 15(4) (2006) 485–505

4. Lamma, E., Mello, P., Riguzzi, F., Storari, S.: Applying inductive logic program-
ming to process mining. Inductive Logic Programming (2008) 132–146

5. Goedertier, S., Martens, D., Vanthienen, J., Baesens, B.: Robust Process Discovery
with Artificial Negative Events. Journal of Machine Learning Research 10 (2009)
1305–1340

6. Mazurkiewicz, A.W.: Trace theory. In: Petri Nets: Central Models and Their
Properties, Advances in Petri Nets 1986, Part II, Proceedings of an Advanced
Course, Bad Honnef, 1986. (1986) 279–324

7. Dumas, M., Garćıa-Bañuelos, L.: Process mining reloaded: Event structures as
a unified representation of process models and event logs. In: Application and
Theory of Petri Nets and Concurrency (ICATPN’15). Volume 9115 of LNCS.,
Springer (2015) 33–48

8. Ponce-de-León, H., Rodŕıguez, C., Carmona, J., Heljanko, K., Haar, S.: Unfolding-
based process discovery. CoRR abs/1507.02744 (2015)

9. Esparza, J., Römer, S., Vogler, W.: An improvement of McMillan’s unfolding
algorithm. Formal Methods in System Design 20(3) (2002) 285–310

10. Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, event structures and domains,
part I. Theoretical Computer Science 13 (1981) 85–108

11. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: Quality dimensions in
process discovery: The importance of fitness, precision, generalization and simplic-
ity. Int. J. Cooperative Inf. Syst. 23(1) (2014)

12. Winskel, G.: Categories of models for concurrency. In: Seminar on Concurrency,
Carnegie-Mellon University, Pittsburg, PA, USA, July 9-11, 1984. (1984) 246–267

13. Fahland, D., van der Aalst, W.M.P.: Simplifying discovered process models in a
controlled manner. Inf. Syst. 38(4) (2013) 585–605

14. vanden Broucke, S.K.L.M., Weerdt, J.D., Vanthienen, J., Baesens, B.: Determining
process model precision and generalization with weighted artificial negative events.
IEEE Trans. Knowl. Data Eng. 26(8) (2014) 1877–1889

15. Nieuwenhuis, R., Oliveras, A.: On SAT modulo theories and optimization problems.
In: Theory and Applications of Satisfiability Testing - SAT 2006. (2006) 156–169

16. The Model Checking Contest: Website. http://mcc.lip6.fr/.
17. van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Pro-

cess discovery using integer linear programming. In: Proc. of ICATPN’08. (2008)
368–387

18. Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B.F., van der Aalst,
W.M.P.: Measuring precision of modeled behavior. Inf. Syst. E-Business Manage-
ment 13(1) (2015) 37–67

19. Adriansyah, A.: Aligning observed and modeled behavior. PhD thesis, Technische
Universiteit Eindhoven (2014)

20. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Synthesis of petri nets from
finite partial languages. Fundam. Inform. 88(4) (2008) 437–468

21. Bergenthum, R., Desel, J., Mauser, S., Lorenz, R.: Construction of process models
from example runs. T. Petri Nets and Other Models of Concurrency 2 (2009)
243–259

http://mcc.lip6.fr/

	Unfolding-Based Process Discovery
	1 Introduction
	2 Preliminaries
	3 Independence-Preserving Discovery
	4 Introducing Generalization
	4.1 Language-Preserving Generalization
	4.2 Controlling Generalization via Negative Information

	5 Computing Folding Equivalences
	5.1 SMT Encoding
	5.2 Finding an Optimal Folding Equivalence

	6 Experiments
	7 Related Work
	8 Conclusions

