We present an in-depth analysis of the concept of spin precession frequency
for integrable orbital motion in storage rings. Spin motion on the periodic
closed orbit of a storage ring can be analyzed in terms of the Floquet theorem
for equations of motion with periodic parameters and a spin precession
frequency emerges in a Floquet exponent as an additional frequency of the
system. To define a spin precession frequency on nonperiodic synchro-betatron
orbits we exploit the important concept of quasiperiodicity. This allows a
generalization of the Floquet theorem so that a spin precession frequency can
be defined in this case too. This frequency appears in a Floquet-like exponent
as an additional frequency in the system in analogy with the case of motion on
the closed orbit. These circumstances lead naturally to the definition of the
uniform precession rate and a definition of spin tune. A spin tune is a uniform
precession rate obtained when certain conditions are fulfilled. Having defined
spin tune we define spin-orbit resonance on synchro--betatron orbits and
examine its consequences. We give conditions for the existence of uniform
precession rates and spin tunes (e.g. where small divisors are controlled by
applying a Diophantine condition) and illustrate the various aspects of our
description with several examples. The formalism also suggests the use of
spectral analysis to ``measure'' spin tune during computer simulations of spin
motion on synchro-betatron orbits.Comment: 62 pages, 1 figure. A slight extension of the published versio