135 research outputs found

    Photodecomposition of iodinated contrast media and subsequent formation of toxic iodinated moieties during final disinfection with chlorinated oxidants

    Get PDF
    Large amount of iodinated contrast media (ICM) are found in natural waters (up to ”g.L-1 levels) due to their worldwide use in medical imaging and their poor removal by conventional wastewater treatment. Synthetic water samples containing different ICM and natural organic matter (NOM) extracts were subjected to UV254 irradiation followed by the addition of chlorine (HOCl) or chloramine (NH2Cl) to simulate final disinfection. In this study, two new quantum yields were determined for diatrizoic acid (0.071 mol.Einstein-1) and iotalamic acid (0.038 mol.Einstein-1) while values for iopromide (IOP) (0.039 mol.Einstein-1), iopamidol (0.034 mol.Einstein-1) and iohexol (0.041 mol.Einstein-1) were consistent with published data. The photodegradation of IOP led to an increasing release of iodide with increasing UV doses. Iodide is oxidized to hypoiodous acid (HOI) either by HOCl or NH2Cl. In presence of NOM, the addition of oxidant increased the formation of iodinated disinfection by-products (I-DBPs). On one hand, when the concentration of HOCl was increased, the formation of I-DBPs decreased since HOI was converted to iodate. On the other hand, when NH2Cl was used the formation of I-DBPs was constant for all concentration since HOI reacted only with NOM to form I-DBPs. Increasing the NOM concentration has two effects, it decreased the photodegradation of IOP by screening effect but it increased the number of reactive sites available for reaction with HOI.For experiments carried out with HOCl, increasing the NOM concentration led to a lower formation of I-DBPs since less IOP are photodegraded and iodate are formed. For NH2Cl the lower photodegradation of IOP is compensated by the higher amount of NOM reactive sites, therefore, I-DBPs concentrations were constant for all NOM concentrations. 7 different NOM extracts were tested and almost no differences in IOP degradation and I-DBPs formation was observed. Similar behaviour was observed for the 5 ICM tested. Both oxidant poorly degraded the ICM and a higher formation of I-DBPs was observed for the chloramination experiments compared to the chlorination experiment. Results from toxicity testing showed that the photodegradation products of IOP are toxic and confirmed that the formation of I-DBPs leads to higher toxicity. Therefore, for the experiment with HOCl where iodate are formed the toxicity was lower than for the experiments with NH2Cl where a high formation of I-DBPs was observed

    Protein tyrosine adduct in humans self-poisoned by chlorpyrifos

    Get PDF
    Studies of human cases of self-inflicted poisoning suggest that chlorpyrifos oxon reacts not only with acetylcholinesterase and butyrylcholinesterase but also with other blood proteins. A favored candidate is albumin because in vitro and animal studies have identified tyrosine 411 of albumin as a site covalently modified by organophosphorus poisons. Our goal was to test this proposal in humans by determining whether plasma from humans poisoned by chlorpyrifos has adducts on tyrosine. Plasma samples from 5 self-poisoned humans were drawn at various time intervals after ingestion of chlorpyrifos for a total of 34 samples. All 34 samples were analyzed for plasma levels of chlorpyrifos and chlorpyrifos oxon (CPO) as a function of time post-ingestion. Eleven samples were analyzed for the presence of diethoxyphosphorylated tyrosine by mass spectrometry. Six samples yielded diethoxyphosphorylated tyrosine in pronase digests. Blood collected as late as 5 days after chlorpyrifos ingestion was positive for CPO-tyrosine, consistent with the 20-day half-life of albumin. High plasma CPO levels did not predict detectable levels of CPO-tyrosine. CPO-tyrosine was identified in pralidoxime treated patients as well as in patients not treated with pralidoxime, indicating that pralidoxime does not reverse CPO binding to tyrosine in humans. Plasma butyrylcholinesterase was a more sensitive biomarker of exposure than adducts on tyrosine. In conclusion, chlorpyrifos oxon makes a stable covalent adduct on the tyrosine residue of blood proteins in humans who ingested chlorpyrifos

    Optimal Sensor Placement in Water Distribution Systems for Injection of Chlorpyrifos

    No full text

    Comparison of anion exchange resins and aluminum-based coagulants for natural organic matter (NOM) removal and disinfection by-product (DBP) formation

    No full text
    Anion exchange resins (AERs) were compared with aluminum-based coagulants for reducing disinfection by-product (DBP) precursor concentrations from a source water collected in northeast Ohio, USA. Three AERs (IRA-910, IRA-958, and MIEX) were evaluated to determine which resin would remove the most natural organic matter (NOM) and moieties responsible for DBP formation. All the AERs were found to be highly proficient at NOM removal specifically the moieties that absorb UV254 (i.e., chromophores) over 75 min of contact time; however, MIEX removed NOM at a faster rate than IRA-910 and IRA-958 resins. Enhanced coagulation was effective at removing approximately 35% of the NOM and 40–60% of the chromophores and fluorophores (i.e., excitation–emission matrix pairs A and C). DBP formation was determined as a function of pH for the different NOM removal processes. MIEX treatment resulted in significant reduction in DBP concentrations when compared to chlorinating the raw source water. MIEX generally out-performed enhanced coagulation for reducing DBP formation. However, alum was found to remove more NOM and resulted in less DBPs compared to aluminum chlorohydrate. This could impact water utilities trying to balance the health effects due to DBP exposure verses chemical/sludge management costs

    Chromium Leaching from a Silicone Foam-Encapsulated Mixed Waste Surrogate

    No full text
    This study assessed chromium leaching from silicone foam-encapsulated salt waste, using a surrogate formulated after Department of Energy complex mixed waste. Two commercial formulations of silicone foam (Wacker ELEKTROGUARD 2100 and General Electric RTV-664) were evaluated as a function of waste load (28−48 wt %). Chromium leaching was formulation specific and increased with increasing waste load as measured by the Toxicity Characteristic Leaching Procedure (TCLP). Chromium release followed transport controlled dissolution at all waste loads under TCLP (cut samples) and Accelerated Leach Test (ALT) (molded samples) conditions. Aqueous and surface complexation modeling was also used to describe reduced chromium effective diffusivity due to iron oxide addition. Comparison of modeling and measured diffusivities as a function of waste load demonstrated that the total available iron surface site concentration increased with increasing waste load, consistent with pore differences measured by image analysis. These results provide a basis for further work on modeling and engineering waste encapsulation using silicone foam

    Effects of quenching methods on HAA determination in chloraminated waters

    No full text
    This study investigated how determination of haloacetic acid (HAA) in chloraminated samples was affected by use of ammonium chloride (NH4Cl), the chlorine quenching agent recommended in US Environmental Protection Agency method 552.3. Alternative quenching agents and methods were also examined

    Combined chlorine dissipation: Pipe material, water quality, and hydraulic effects

    No full text
    A significant knowledge gap exists for utility managers struggling to comply with the Stage 2 Disinfectants/Disinfection Byproducts Rule and other water quality objectives. This is particularly true for utility managers who have switched to or are considering switching from free chlorine to combined chlorine disinfection. Water chemistry and temperature can significantly affect chlorine demand and residual chlorine in distribution systems. Galvanized-iron and unlined cast-iron pipes are most likely to experience the lowest chlorine residuals, particularly under low-flow to stagnant-flow conditions. This article aims to provide a simplified approach for combined chlorine modeling, similar to that used for free chlorine dissipation modeling. Knowledge of the mechanisms, rates/kinetics, and a simplified approach to modeling and predicting total chlorine residuals will enable utility managers to be more comfortable and confident in decisions they make about switching to chloramines
    • 

    corecore